Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 7065–7074 | Cite as

Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation

  • B. P. Singh
  • Prabha
  • Parveen Saini
  • Tejendra Gupta
  • Parveen Garg
  • Gaurav Kumar
  • Indresh Pande
  • Shailaja Pande
  • R. K. Seth
  • S. K. Dhawan
  • R. B. Mathur
Research Paper

Abstract

High aspect ratio multi-walled carbon nanotubes (MWCNTs) reinforced low density polyethylene (LDPE) composites were prepared by solvent casting followed by compression molding technique. Electromagnetic interference (EMI) shielding effectiveness (SE) of these composites was investigated in the frequency range of 12.4–18 GHz (Ku-band) for the first time. The experimental results indicate that the EMI-SE of these composites is sensitive to the MWCNT loading. The average value of EMI-SE reaches 22.4 dB for 10 wt% MWCNT-LDPE composites, indicating the usefulness of this material for EMI shielding in the Ku-band. The main reason for improved SE has been attributed to significant improvement in the electrical conductivity of the composites by 20 orders of magnitude, i.e., from 10−20 for pure LDPE to 0.63 S/cm for MWCNT-LDPE, which is three order of magnitude higher than the previous reports for MWCNT-LDPE composites. Differential scanning calorimetry of the MWCNT-LDPE composites showed around 37% improvement in the crystalline contents over pure LDPE samples which resulted into enhanced thermal stability of the composites. The thermal decomposition temperature of LDPE is shifted by 40 °C on addition of 5 wt% MWCNT. The studies therefore show that these composite can be used as light weight, thermally stable EMI shielding, and antistatic material.

Keywords

Multiwalled carbon nanotubes Low density polyethylene Electromagnetic interference Shielding effectiveness 

Notes

Acknowledgments

The authors wish to express their gratitude to Prof. R.C. Budhani, Director NPL, to accord his permission to publish the results. Authors would like to thank Mr. K.N. Sood for their support in carrying out SEM.

References

  1. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRefGoogle Scholar
  2. Das NC, Khastgir D, Chaki TK, Chakraborthy A (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Composites A 31:1069–1081CrossRefGoogle Scholar
  3. Endo M, Takeuchi K, Hiraoka T, Furuta T, Kasai T, Sun X, Kiang CH, Dresselhaus MS (1997) Stacking nature of graphene layers in carbon nanotubes and nanofibres. J Phys Chem Solid 58:1707–1712CrossRefGoogle Scholar
  4. Fu M, Yu Y, Xie JJ, Wang LP, Fan MY, Jiang SL, Zeng YK (2009) Significant influence of film thickness on the percolation threshold of multiwall carbon nanotube/low density polyethylene composite films. Appl Phys Lett 94(012904):1–3Google Scholar
  5. Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: Morphology and physical properties. J Polym Sci B 45:597–606CrossRefGoogle Scholar
  6. Huang Y, Li N, Ma Y, Du F, Li F, He X, Lin X, Gao H, Chen Y (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614–1621CrossRefGoogle Scholar
  7. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejaković DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589–591CrossRefGoogle Scholar
  8. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145CrossRefGoogle Scholar
  9. Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Guo T, Chen Y (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827CrossRefGoogle Scholar
  10. Mathur RB, Chatterjee S, Singh BP (2008a) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1615CrossRefGoogle Scholar
  11. Mathur RB, Pande S, Singh BP, Dhami TL (2008b) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Compos 29:717–727CrossRefGoogle Scholar
  12. McNally T, Po¨tschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232CrossRefGoogle Scholar
  13. Olmedo L, Hourquebie P, Jousse F (2001) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers. Wiley, Chichester, p 367Google Scholar
  14. Pande S, Singh BP, Mathur RB, Dhami TL, Saini P, Dhawan SK (2009) Improved electromagnetic interference shielding properties of MWCNT–PMMA composites using layered structures. Nanoscale Res Lett 4:327–334CrossRefGoogle Scholar
  15. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2008) Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth Met 158:251–258CrossRefGoogle Scholar
  16. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926CrossRefGoogle Scholar
  17. Singh BP, Singh D, Mathur RB, Dhami TL (2008) Influence of modified MWCNTs on the mechanical, electrical, thermal and morphological properties of polyimide nanocomposites. Nanoscale Res Lett 3:444–453CrossRefGoogle Scholar
  18. Valentino O, Sarnoa M, Rainone NG, Nobilea MR, Ciambellia P, Neitzertb HC, Simon GP (2008) Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Physica E 40:2440–2445CrossRefGoogle Scholar
  19. Wang Y, Jing X (2005) Intrinsically conducting polymers for electromagnetic interference shielding. Polym Adv Technol 16:344–351CrossRefGoogle Scholar
  20. Yang S, Lozano K, Lomeli A, Foltz DH, Jones R (2005) Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites A 36:691–697CrossRefGoogle Scholar
  21. Yuen SM, Ma CCM, Chuang CY, Yu KC, Wu SY, Yang CC, Wei MH (2008) Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites. Compos Sci Technol 68:963–968CrossRefGoogle Scholar
  22. Zhao D, Lei Q, Qin C, Bai X (2006) Melt process and performance of multi-walled carbon nanotubes reinforced LDPE composites. Pigment Resin Technol 35:341–345CrossRefGoogle Scholar
  23. Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • B. P. Singh
    • 1
  • Prabha
    • 1
  • Parveen Saini
    • 2
  • Tejendra Gupta
    • 1
  • Parveen Garg
    • 1
  • Gaurav Kumar
    • 1
  • Indresh Pande
    • 1
  • Shailaja Pande
    • 1
  • R. K. Seth
    • 1
  • S. K. Dhawan
    • 2
  • R. B. Mathur
    • 1
  1. 1.Physics and Engineering of Carbon, Division of Materials Physics and EngineeringNational Physical Laboratory (CSIR)New DelhiIndia
  2. 2.Polymer & Soft MaterialsNational Physical LaboratoryNew DelhiIndia

Personalised recommendations