Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 7005–7012 | Cite as

Synthesis of single-crystal Sm-Co nanoparticles by cluster beam deposition

  • O. Akdogan
  • W. Li
  • G. C. Hadjipanayis
  • D. J. Sellmyer
Research Paper


Single-crystal Sm-Co nanoparticles have been successfully produced by a cluster beam deposition technique. Particles have been deposited by DC magnetron sputtering using high Ar pressures on both single-crystal Si substrates and Au grids for the magnetic and structural/microstructural properties, respectively. Oxidation of the particles is prevented by using carbon buffer and cover layers. Nanoparticles have a uniform size distribution with an average size of 4.2, 6 and 7 nm at 1, 1.5 and 2 Torr of Ar pressure, respectively. At 1 Torr, the particles have the disordered 1:7 structure and a high coercivity of 19 kOe at 10 K. These particles show a superparamagnetic behavior with a blocking temperature of TB = 145 K. From this value of TB and the particle volume, the value of anisotropy constant K is estimated to be around 2.2 × 10ergs/cc. Heat is introduced to the particles during their flight to the substrate to increase the particle size. Nanoparticles of SmCo5 with an average size of 15 nm and high room temperature coercivity have been produced. No change in magnetic and structural properties of the samples has been observed even after 10 months. Cluster beam deposition could play a key role for the production of rare earth nanoparticles for many applications.


Sputtering Coercivity Nanoparticles Sm-Co Rare earth metals 



The authors would like to thank A. M. Gabay for helpful discussions. The authors also thank Dr. Melania Marinescu and EEC for providing the targets. Work supported by DOE DE-FG02-04ER4612.


  1. Akdogan NG, Hadjipanayis GC, Sellmyer DJ (2009a) Anisotropic Sm-(Co, Fe) nanoparticles by surfactant-assisted ball milling. J Appl Phys 105:07A710CrossRefGoogle Scholar
  2. Akdogan NG, Hadjipanayis GC, Sellmyer DJ (2009b) Anisotropic PrCo5 nanoparticles by surfactant-assisted ball milling. IEEE Trans Magn 45:4417CrossRefGoogle Scholar
  3. Akdogan NG, Hadjipanayis GC, Sellmyer DJ (2010) Novel Nd2Fe14B nanoflakes and nanoparticles for the development of high energy nanocomposite magnets. Nanotechnology 21:295705CrossRefGoogle Scholar
  4. Balasubramanian B, Skomski R, Li XZ, Valloppilly SR, Shield JE, Hadjipanayis GC, Sellmyer DJ (2011a) Cluster synthesis and direct ordering of rare-earth transition-metal nanomagnets. Nano Lett 11:1747CrossRefGoogle Scholar
  5. Balasubramanian B, Skomski R, Li XZ, Shah VR, Hadjipanayis GC, Shield JE, Sellmyer DJ (2011b) Magnetism of cluster-deposited Y–Co nanoparticles. J Appl Phys 109:07A707CrossRefGoogle Scholar
  6. Binns C, Trohidou KN, Bansmann J, Baker SH, Blackman JA, Bucher JP, Kechrakos D, Kleibert A, Louch S, Meiwes-Broer KH, Pastor GM, Perez A, Xie Y (2005) The behaviour of nanostructured magnetic materials produced by depositing gas-phase nanoparticles. J Phys D Appl Phys 38:R357CrossRefGoogle Scholar
  7. Colak L, Hadjipanayis GC (2009) Phase transformation in silica-coated FePt nanoparticles. IEEE Trans Magn 45:4081CrossRefGoogle Scholar
  8. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, ReadingGoogle Scholar
  9. Frey NA, Sun S (2010) Magnetic nanoparticle for information storage applications inorganic materials. CRC Press, Boca Raton, pp 33–68Google Scholar
  10. Giri A, Chowdary K, Majetich SA (1999) Hard magnetic nanoparticles and nanocomposites. Mat Res Soc Symp Proc 577:197CrossRefGoogle Scholar
  11. Gu H, Xu B, Rao J, Zheng RK, Zhang XX, Fung KK, Wong CYC (2003) Chemical synthesis of narrowly dispersed SmCo5 nanoparticles. J Appl Phys 93:7589CrossRefGoogle Scholar
  12. Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821CrossRefGoogle Scholar
  13. Hadjipanayis GC (1999) Nanophase hard magnets. J Magn Magn Mater 200:373CrossRefGoogle Scholar
  14. Hou Y, Xu Z, Peng S, Rong C, Liu JP, Sun S (2007) A facile synthesis of SmCo5 magnets from core/shell Co/Sm2O3 nanoparticles. Adv Mater 19:3349CrossRefGoogle Scholar
  15. Kirkpatrick EM, Majetich SA, McHenry ME (1996) Magnetic properties of single domain samarium cobalt nanoparticles. IEEE Trans Magn 32:4502CrossRefGoogle Scholar
  16. Kraus W, Nolze G (1996) POWDER CELL-a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Cryst 29:301CrossRefGoogle Scholar
  17. Liu Y, Sellmyer DJ, Shindo D (2005) Handbook of advanced magnetic materials, vol. 4. Springer Publication, New YorkGoogle Scholar
  18. Liu X, He S, Qiu JM, Wang JP (2011) Nanocomposite exchange-spring magnet synthesized by gas phase method: from isotropic to anisotropic. ApplPhysLett 98:222507Google Scholar
  19. Matsushita T, Iwamoto T, Inokuchi M, Toshima N (2010) Novel ferromagnetic materials of SmCo5 nanoparticles in single-nanometer size: chemical syntheses and characterizations. Nanotechnology 21:095603CrossRefGoogle Scholar
  20. McHenry ME, Laughlin DE (2000) Nano-scale materials development for future magnetic applications. Acta Mater 48:223CrossRefGoogle Scholar
  21. Qiu JM, Wang JP (2006) Monodispersed and highly ordered L10FePt nanoparticles prepared in the gas phase. ApplPhysLett 88:192505Google Scholar
  22. Qiu JM, Bai J, Wang JP (2006) In situ magnetic field alignment of directly ordered L10FePt nanoparticles. ApplPhysLett 89:222506Google Scholar
  23. Rasband WS, ImageJ (1997–2004) National Institutes of Health, Bethesda, Maryland, USA,
  24. Sayama J, Mizutani K, Asahi T, Osaka T (2004) Thin films of SmCo5 with very high perpendicular magnetic anisotropy. ApplPhysLett 85:5640Google Scholar
  25. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis GC, Givord D, Nogue′s J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850CrossRefGoogle Scholar
  26. Stoyanov S, Skumryev V, Zhang Y, Huang Y, Hadjipanayis GC, Nogue′s J (2003a) High anisotropy Sm-Co nanoparticles: preparation by cluster gun technique and their magnetic properties. J Appl Phys 93:7592CrossRefGoogle Scholar
  27. Stoyanov S, Huang Y, Zhang Y, Skumryev V, Hadjipanayis GC, Weller D (2003b) Fabrication of ordered FePt nanoparticles with a cluster gun. J Appl Phys 93:7190CrossRefGoogle Scholar
  28. Tuaillon-Combes J, Négrier M, Barbara B, Wernsdorfer W, Treilleux M, Mélinon P, Boisron O, Perez A (2003) Synthesis and properties of magnetic cobalt–samarium nanocluster assemblies. I J Nanosci 2:75CrossRefGoogle Scholar
  29. Wegner K, Piseri P, Tafreshi HV, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J PhysD Appl Phys 39:R439Google Scholar
  30. Zhang LN, Hu JF, Chen JS, Ding J (2011) Nanostructured SmCo5 thin films with perpendicular anisotropy formed in a wide range of Sm-Co compositions. J Nanosci Nanotechnol 11:2644CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • O. Akdogan
    • 1
  • W. Li
    • 1
  • G. C. Hadjipanayis
    • 1
  • D. J. Sellmyer
    • 2
  1. 1.Department of Physics and AstronomyUniversity of DENewarkUSA
  2. 2.Department of Physics and AstronomyUniversity of NebraskaLincolnUSA

Personalised recommendations