Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6821–6835 | Cite as

Toxicity of citrate-capped AuNPs: an in vitro and in vivo assessment

  • Stefania Sabella
  • Virgilio Brunetti
  • Giuseppe Vecchio
  • Antonio Galeone
  • Gabriele Maiorano
  • Roberto Cingolani
  • Pier Paolo PompaEmail author
Research Paper

Abstract

In this study, we show that 15 nm citrate-capped AuNPs exert a remarkable toxicity in living systems. The assessment was performed by using well-characterized AuNPs, the combination of in vitro and in vivo models (namely two different cell lines and Drosophila melanogaster), exposure to low dosages of nanoparticles (in the sub-nanomolar concentration range), along with the application of several biological assays to monitor different aspects of the toxic effects, such as viability, genotoxicity, and molecular biomarkers.

Keywords

Nanotoxicology Gold nanoparticles In vitro In vivo Environmental, health and safety (EHS) 

Notes

Acknowledgments

The authors gratefully acknowledge M.A. Malvindi for help during experiments and V. Fiorelli for the expert technical assistance.

Supplementary material

11051_2011_590_MOESM1_ESM.docx (702 kb)
Supplementary material 1 (DOCX 702 kb)

References

  1. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269CrossRefGoogle Scholar
  2. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Leśniak A, Salvati A, Hanrahan JP, Jong WH, Dziubałtowska E, Stȩpnik M, Rydzyński K, McKerr G, Lynch I, Dawson KA, Howard CV (2008) Reproducible Comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8(9):3069–3074CrossRefGoogle Scholar
  3. Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, Hails LA, Ingham E, Verkade P, Lane J, Heesom K, Newson R, Case CP (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4(12):876–883CrossRefGoogle Scholar
  4. Bhargav D, Pratap Singh M, Murthy RC, Mathur N, Misra D, Saxena DK, Kar Chowdhuri D (2008) Toxic potential of municipal solid waste leachates in transgenic Drosophila melanogaster (hsp70-lacZ): hsp70 as a marker of cellular damage. Ecotox Environ Saf 69(2):233–245CrossRefGoogle Scholar
  5. Botas J (2007) Drosophila researchers focus on human disease. Nat Genet 39(5):589–591CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  7. Brandenberger C, Rothen-Rutishauser B, Muhlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG (2010) Effects and uptake of gold nanoparticles deposited at the air–liquid interface of a human epithelial airway model. Toxicol Appl Pharm 242(1):56–65CrossRefGoogle Scholar
  8. Braun A, Hoffmann JA, Meister M (1998) Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc Natl Acad Sci USA 95(24):14337–14342CrossRefGoogle Scholar
  9. Carmona ER, Guecheva TN, Creus A, Marcos R (2011) Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environ Mol Mutagen 52(2):165–169CrossRefGoogle Scholar
  10. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055CrossRefGoogle Scholar
  11. Chompoosor A, Saha K, Ghosh PS, Macarthy DJ, Miranda OR, Zhu ZJ, Arcaro KF, Rotello VM (2010) The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 6(20):2246–2249CrossRefGoogle Scholar
  12. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327CrossRefGoogle Scholar
  13. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44CrossRefGoogle Scholar
  14. Downey GP, Doherty DE, Schwab B, Elson EL, Henson PM, Worthen GS (1990) Retention of leukocytes in capillaries: role of cell size and deformability. J Appl Physiol 69(5):1767–1778Google Scholar
  15. Eck W, Nicholson AI, Zentgraf H, Semmler W, Sn Bartling (2010) Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett 10(7):2318–2322CrossRefGoogle Scholar
  16. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834CrossRefGoogle Scholar
  17. Farrer RA, Butterfield FL, Chen VW, Fourkas JT (2005) Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett 5(6):1139–1142CrossRefGoogle Scholar
  18. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241(105):20–22Google Scholar
  19. Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA (2008) Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnol 6:2CrossRefGoogle Scholar
  20. Gayathri MV, Krishnamurthy NB (1981) Studies on the toxicity of the mercurial fungicide Agallol 3 in Drosophila melanogaster. Environ Res 24(1):89–95CrossRefGoogle Scholar
  21. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129(37):11653–11661CrossRefGoogle Scholar
  22. Irving P, Ubeda J-M, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M (2005) New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 7(3):335–350CrossRefGoogle Scholar
  23. Ischiropoulos H, Gow A, Thom SR, Kooy NW, Royall JA, Crow JP (1999) [38] Detection of reactive nitrogen species using 2,7-dichlorodihydrfluorescein and dihydrorhodamine 123. Methods Enzymol 301:367–373Google Scholar
  24. Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC, Brummel T, Benzer S (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci USA 104(20):8253–8256CrossRefGoogle Scholar
  25. Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun’ko YK, Kotov NA (2008) High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2(5):928–938CrossRefGoogle Scholar
  26. Jennings BH (2011) Drosophila—a versatile model in biology and medicine. Mater Today 14(5):190–195CrossRefGoogle Scholar
  27. Khan JA, Pillai B, Das TK, Singh Y, Maiti S (2007) Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem 8(11):1237–1240CrossRefGoogle Scholar
  28. Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50(6):1260–1278CrossRefGoogle Scholar
  29. Lee J-S, Stoeva SI, Mirkin CA (2006) DNA-induced size-selective separation of mixtures of gold nanoparticles. J Am Chem Soc 128(27):8899–8903CrossRefGoogle Scholar
  30. Li JJ, Zou L, Hartono D, Ong CN, Bay BH, Yung LYL (2008) Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20(1):138–142CrossRefGoogle Scholar
  31. Li JJ, Hartono D, Ong CN, Bay BH, Yung LY (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003CrossRefGoogle Scholar
  32. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367CrossRefGoogle Scholar
  33. Lin W, Huang Y-w, Zhou X-D, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharm 217(3):252–259CrossRefGoogle Scholar
  34. Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43(16):6357–6363CrossRefGoogle Scholar
  35. Lledías F, Hansberg W (1999) Oxidation of human catalase by singlet oxygen in myeloid leukemia cells. Photochem Photobiol 70(6):887–892CrossRefGoogle Scholar
  36. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270CrossRefGoogle Scholar
  37. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491CrossRefGoogle Scholar
  38. Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin CA (2010) Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano 4(10):5641–5646CrossRefGoogle Scholar
  39. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076CrossRefGoogle Scholar
  40. Park MVDZ, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, McKerr G, Howard CV, Lynch I, Dawson KA, Piersma AH, de Jong WH (2009) In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240(1):108–116CrossRefGoogle Scholar
  41. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomedicine 3(2):111–119CrossRefGoogle Scholar
  42. Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6):766–773CrossRefGoogle Scholar
  43. Pompa PP, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G, Falqui A, Bertoni G, Cingolani R (2011a) In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4(4):405–413CrossRefGoogle Scholar
  44. Pompa PP, Vecchio G, Galeone A, Brunetti V, Maiorano G, Sabella S, Cingolani R (2011b) Physical assessment of toxicology at nanoscale: nano dose-metrics and toxicity factor. Nanoscale 3(7):2889–2897CrossRefGoogle Scholar
  45. Rivera Gil P, Oberdöroster G, Elder A, Puntes V, Parak WJ (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4(10):5527–5531CrossRefGoogle Scholar
  46. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030CrossRefGoogle Scholar
  47. Sabella S, Galeone A, Vecchio G, Cingolani R, Pompa PP (2011) AuNPs are toxic in vitro and in vivo: a review. J Nanosci Lett 1(3):145–165Google Scholar
  48. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3(2):410–420CrossRefGoogle Scholar
  49. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654CrossRefGoogle Scholar
  50. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191CrossRefGoogle Scholar
  51. Singh MP, Reddy MMK, Mathur N, Saxena DK, Chowdhuri DK (2009) Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation. Toxicol Appl Pharmacol 235(2):226–243CrossRefGoogle Scholar
  52. Somasundaram K (2000) Tumor suppressor p53: regulation and function. Front Biosci 5:D424–D437CrossRefGoogle Scholar
  53. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  54. Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185CrossRefGoogle Scholar
  55. Yamamoto T, Sakaguchi N, Hachiya M, Nakayama F, Yamakawa M, Akashi M (2008) Role of catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as a second messenger. Leukemia 23(4):761–769CrossRefGoogle Scholar
  56. Yang J, Tower J (2009) Expression of hsp22 and hsp70 transgenes is partially predictive of Drosophila survival under normal and stress conditions. J Gerontol Ser A 64A(8):828–838CrossRefGoogle Scholar
  57. Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11(12):1385–1391CrossRefGoogle Scholar
  58. Zhao L, Kroenke CD, Song J, Piwnica-Worms D, Ackerman JJH, Neil JJ (2008) Intracellular water-specific MR of microbead-adherent cells: the HeLa cell intracellular water exchange lifetime. NMR Biomed 21(2):159–164CrossRefGoogle Scholar
  59. Zylicz M, King FW, Wawrzynow A (2001) Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 20(17):4634–4638CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stefania Sabella
    • 1
  • Virgilio Brunetti
    • 1
  • Giuseppe Vecchio
    • 1
  • Antonio Galeone
    • 1
  • Gabriele Maiorano
    • 1
  • Roberto Cingolani
    • 2
  • Pier Paolo Pompa
    • 1
    Email author
  1. 1.Italian Institute of Technology (IIT)Center for Bio-Molecular Nanotechnology@UniLeArnesanoItaly
  2. 2.Italian Institute of TechnologyCentral Research LaboratoriesGenoaItaly

Personalised recommendations