Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6789–6803 | Cite as

Effect of gold nanoparticles on adipogenic differentiation of human mesenchymal stem cells

  • Yvonne Kohl
  • Erwin Gorjup
  • Alisa Katsen-Globa
  • Claudia Büchel
  • Hagen von BriesenEmail author
  • Hagen Thielecke
Research Paper


Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4–21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.


Gold nanoparticles Human mesenchymal stem cells Adipogenic differentiation Toxicity Cellular uptake Health effects 



We thank Dipl.-Chem. Andreas Henkel (Johannes Gutenberg University Mainz, Institute for Physical Chemistry, Mainz, Germany) for his assistance with TEM and Norbert Pütz (Saarland University.

Department of Anatomy and Cell Biology, Germany) and for his help with the SEM. We also thank Yulia Zaytseva for her technical assistance in the electron microscopy study.


  1. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708. doi: 10.1002/smll.200801546 CrossRefGoogle Scholar
  2. Arnida A, Malugin A, Ghandehari H (2010) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30:212–217. doi: 10.1002/jat.1486 Google Scholar
  3. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782. doi: 10.1039/B806051G CrossRefGoogle Scholar
  4. Brandenberger C, Rothen-Rutishauser B, Mühlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG (2010) Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242:56–65. doi: 10.1016/j.taap.2009.09.014 CrossRefGoogle Scholar
  5. Brasaemle DL (2007) The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559. doi: 10.1194/jlr.R700014-JLR200 CrossRefGoogle Scholar
  6. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419. doi: 10.1093/toxsci/kfi256 CrossRefGoogle Scholar
  7. Brown CL, Whitehouse MW, Tiekink ER, Bushell GR (2008) Colloidal metallic gold is not bio-inert. Inflammopharmacology 16:133–137CrossRefGoogle Scholar
  8. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327. doi: 10.1002/smll.200400093 CrossRefGoogle Scholar
  9. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919. doi: 10.1016/j.biomaterials.2007.12.037 CrossRefGoogle Scholar
  10. Di Guglielmo C, López DR, De Lapuente J, Mallafre JML, Suàrez MB (2010) Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach reproductive toxicology. Reprod Toxicol 30:271–276. doi: 10.1016/j.reprotox.2010.05.001 CrossRefGoogle Scholar
  11. Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA (2008) Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci Total Environ 4:51–61. doi: 10.1016/j.scitotenv.2008.04.023 Google Scholar
  12. Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30:603–610. doi: 10.1016/j.biomaterials.2008.09.050 CrossRefGoogle Scholar
  13. Fan JH, Huang WI, Li WT, Yeh JM (2009) Biocompatibility study of gold nanoparticles to human cells. ICBME Proceedings 23:870–873Google Scholar
  14. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22. doi: 10.1038/physci241020a0 Google Scholar
  15. Fröhlich E, Samberger C, Kueznik T, Absenger M, Roblegg E, Zimmer A, Pieber TR (2009) Cytotoxicity of nanoparticles independent from oxidative stress. J Toxicol Sci 34:363–375CrossRefGoogle Scholar
  16. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. doi: 10.1021/bc049951i CrossRefGoogle Scholar
  17. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich A, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2010) Silver nanoparticles: evaluation of DNAdamage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33. doi: 10.1016/j.toxlet.2010.12.001 CrossRefGoogle Scholar
  18. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253. doi: 10.1259/bjr/13169882 CrossRefGoogle Scholar
  19. Hauck TS, Ghazani AA, Chan WCW (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159. doi: 10.1002/smll.200700217 CrossRefGoogle Scholar
  20. Hoet P, Brüske-Hohlfeld I, Salata O (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnology 2:1–15. doi: 10.1186/1477-3155-2-12 CrossRefGoogle Scholar
  21. Katsen AD, Vollmar B, Mestres-Ventura P, Menger MD (1998) Cell surface and nuclear changes during TNF-alpha-induced apoptosis in WEHI 164 murine fibrosarcoma cells. A correlative light, scanning, and transmission electron microscopical study. Virchows Arch 433:75–83. doi: 10.1007/s004280050219 CrossRefGoogle Scholar
  22. Kittler S, Greulich C, Koller M, Epple M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394:495–502. doi: 10.1007/s00423-009-0472-1 CrossRefGoogle Scholar
  23. Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543. doi: 10.1002/smll.200700794 CrossRefGoogle Scholar
  24. Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, Yeh CS (2010) Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew Chem Int Ed 49:2711–2715. doi: 10.1002/anie.200906927 Google Scholar
  25. Lillie RD, Ashburn LL (1943) Supersaturated solutions of fat stains in dilute isopropanol for demonstration of acute fatty degeneration not shown by Herxheimer’s technique. Arch Pathol 36:432–440Google Scholar
  26. Liu DD, Zhang JC, Yi CQ, Yang (2010) The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chinese Sci Bull 55:1013–1019. doi: 10.1007/s11434-010-0046-1 Google Scholar
  27. Male KB, Lanchance B, Hrapovic S, Sunahara G, Loung JHT (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493. doi: 10.1021/ac8004555 CrossRefGoogle Scholar
  28. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefGoogle Scholar
  29. NanoTech Gold News (2008) BBI Partners with NIST to develop the ‘gold standard’ in nanoparticles. Gold Bulletin 41(1):NTGN1–NTGN4. doi: 10.1007/BF03215628 Google Scholar
  30. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi: 10.1289/ehp.7339 CrossRefGoogle Scholar
  31. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949. doi: 10.1002/smll.200700378 CrossRefGoogle Scholar
  32. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076. doi: 10.1002/smll.200900466 CrossRefGoogle Scholar
  33. Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773. doi: 10.1002/smll.200500492 CrossRefGoogle Scholar
  34. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147. doi: 10.1126/science.284.5411.143 CrossRefGoogle Scholar
  35. Rush GF, Smith PF, Alberts DW, Mirabelli K, Snyder SM, Crooke ST, Sowinski J, Jones H, Bugelski PJ (1987) The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. I. characterization of triethylphosphine gold chloride-induced biochemical and morphological changes in isolated hepatocytes. Toxicol Appl Pharmaco 90:377–390CrossRefGoogle Scholar
  36. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410–420. doi: 10.1039/c0nr00478b CrossRefGoogle Scholar
  37. Sereemaspun A, Rojanathanes R, Wiwanitkit V (2008) Effect of gold nanoparticle on renal cell: an implication for exposure risk. Ren Fail 30:323–325. doi: 10.1080/08860220701860914 CrossRefGoogle Scholar
  38. Wigglesworth VB (1975) Lipid staining for electron microscopy: a new method. J Cell Sci 19:425–437Google Scholar
  39. Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561. doi: 10.1002/smll.200900126 CrossRefGoogle Scholar
  40. Yi C, Liu D, Fong CC, Zhang J, Yang M (2010) Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 4:6439–6448. doi: 10.1021/nn101373r CrossRefGoogle Scholar
  41. Zhu L, Chang DW, Dai L, Hong Y (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7:3592–3597. doi: 10.1021/nl071303v CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yvonne Kohl
    • 1
  • Erwin Gorjup
    • 1
  • Alisa Katsen-Globa
    • 2
  • Claudia Büchel
    • 3
  • Hagen von Briesen
    • 1
    Email author
  • Hagen Thielecke
    • 4
  1. 1.Department of Cell Biology & Applied VirologyFraunhofer Institute for Biomedical EngineeringSt. IngbertGermany
  2. 2.Department of Biophysics & CryotechnologyFraunhofer Institute for Biomedical EngineeringSt. IngbertGermany
  3. 3.Institute of Molecular BiosciencesUniversity of FrankfurtFrankfurtGermany
  4. 4.Vanguard AGBerlinGermany

Personalised recommendations