Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6707–6716 | Cite as

56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines

  • P. Marmorato
  • F. Simonelli
  • K. Abbas
  • J. Kozempel
  • U. Holzwarth
  • F. Franchini
  • J. Ponti
  • N. Gibson
  • F. Rossi
Research Paper

Abstract

Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution γ-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.

Keywords

Fe3O4 NPs uptake Proton irradiation Radioactive nanoparticles Balb/3T3 cell system Caco-2 cell system In vitro uptake Nanomedicine 

References

  1. Abbas K, Buono S, Burgio N, Cotogno G, Gibson N, Maciocco L, Mercurio G, Santagata A, Simonelli F, Tagziria H (2009) Development of an accelerator driven neutron activator for medical radioisotope production. NIM A 601:223–228. doi: 10.1016/j.nima.2008.11.152 CrossRefGoogle Scholar
  2. Abbas K, Cydzik I, Del Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W (2010) Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12(7):2435–2443CrossRefGoogle Scholar
  3. Berry CC, Wells S, Charles S, Aitchison G, Curtis ASG (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25(23):5405–5413. doi: 10.1016/j.biomaterials.2003.12.046 CrossRefGoogle Scholar
  4. Cai H, Li Z, Huang CW, Park R, Shahinian AH, Conti PS (2010) An improved synthesis and biological evaluation of a new cage-like bifunctional chelator, 4-((8-amino-3, 6, 10, 13, 16, 19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl)benzoic acid, for 64Cu radiopharmaceuticals. Nucl Med Biol 37:57–65CrossRefGoogle Scholar
  5. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly S, Cagney G, Linse S, Dawson K (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756. doi: 10.1002/anie.200700465 CrossRefGoogle Scholar
  6. Chan DCF, Kirpotin D, Bunn PA (1993) Synthesis and evaluation of colloidal magnetic iron-oxides for the site specific radiofrequency-induced hyperthermia of cancer. J Magn Mater 122:374–378. doi: 10.1016/0304-8853(93)91113-L CrossRefGoogle Scholar
  7. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRefGoogle Scholar
  8. EXFOR (Experimental Nuclear Reaction Data) from IAEA Nuclear Data Section, Vienna (2008). http://www-nds.iaea.org/exfor/exfor.htm (continuously updated). Accessed April 2011
  9. Firestone RB, Chu SYF, Baglin CM (1998) Update to the 8th edition of the Table of Isotopes. Wiley, New YorkGoogle Scholar
  10. Ghanem GE, Joubran C, Arnould R, Lejeune F, Fruhling J (1993) Labelled polycyanoacrylate nanoparticles for human in vivo use. Appl Radiat Isot 44(9):1219–1224CrossRefGoogle Scholar
  11. Gillis P, Koenig H (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med 5:323–345CrossRefGoogle Scholar
  12. Gould P (2006) Nanomagnetism shows in vivo potential. Nanotoday 1(4):434–439Google Scholar
  13. Gupta AK, Gupta M (2005a) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573. doi: 10.1016/j.biomaterials.2004.05.022 CrossRefGoogle Scholar
  14. Gupta AK, Gupta M (2005b) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  15. Gupta PK, Hung CT (1989) Magnetically controlled targeted micro-carrier systems. Life Sci 44:175–186CrossRefGoogle Scholar
  16. Herrera AP, Rodríguez HL, Torres-Lugo M, Rinaldi C (2006) Functionalization of magnetite (Fe3O4) nanoparticles for cancer treatment. NSTI Nanotech, BostonGoogle Scholar
  17. Liong M, Lu J, Kovochich M, Xia T, Ruehm S, Nel A, Tamanoi F, Zink J (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896. doi: 10.1021/nn800072t CrossRefGoogle Scholar
  18. Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701Google Scholar
  19. Magin RL, Wright SM, Niesman MR, Chan HC, Swartz HM (1986) Liposome delivery of NMR contrast agents for improved tissue imaging. Magn Reson Med 3:440–447CrossRefGoogle Scholar
  20. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251CrossRefGoogle Scholar
  21. Nagatani N, Shinkai M, Honda II, Kobayashi T (2000) Development of a new transformation method using magnetite cationic liposomes and magnetic selection of transformed cells. Biotechnol Lett 22:999–1002CrossRefGoogle Scholar
  22. Nuclides 2000: an electronic chart of the nuclides, software version 1.00. European Commission, Institute of Transuranium Elements, KarlsruheGoogle Scholar
  23. Osaka T, Nakanishib T, Shanmugama S, Takahamaa S, Zhangb H (2009) Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf B Biointerfaces 71(2):325–330CrossRefGoogle Scholar
  24. Ponti J, Colognato R, Franchini F, Gioria S, Simonelli F, Abbas K, Uboldi C, Kirkpatrick J, Holzwarth U, Rossi F (2009) A quantitative in vitro approach to study the intracellular fate of gold nanoparticles: from synthesis to cytotoxicity. Nanotoxicology 3(4):296–306. doi: 10.1080/17435390903056384 CrossRefGoogle Scholar
  25. Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony Forming Efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 1 197(1):29–37. doi: 10.1016/j.toxlet.2010.04.018 CrossRefGoogle Scholar
  26. Sang JS, Reichel J, He B, Schuchman M, Lee S (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127(20):7316–7317CrossRefGoogle Scholar
  27. Scherer F, Anton M, Schillinger U et al (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9(2):102–109. doi: 10.1038/sj/gt/3301624 CrossRefGoogle Scholar
  28. Service RF (2000) Is nanotechnology dangerous? Science 24 290(5496):1526–1527Google Scholar
  29. Simonelli F, Marmorato P, Abbas K, Ponti J, Kozempel J, Holzwarth U, Franchini F, Rossi F (2011) Cyclotron production of radioactive CeO2 nanoparticles and their application for in vitro uptake studies. IEEE-TNBS 10(1):44–50Google Scholar
  30. Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45. doi: 10.1016/j.pcrysgrow.2008.08.003 CrossRefGoogle Scholar
  31. Xu QK, Shen H, Xu JR, Xie MQ, Li XJ (2006) The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate. Appl Surf Sci 253:2158–2164. doi: 10.1016/j.apsusc.2006.04.015 CrossRefGoogle Scholar
  32. Zeng H, Sun S (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18:391–400. doi: 10.1002/adfm.200701211 CrossRefGoogle Scholar
  33. Ziegler JF, Ziegler MD, Biersack JP (2008) SRIM—the stopping and range of ions in matter. http://www.srim.org/. Accessed April 2011

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • P. Marmorato
    • 1
  • F. Simonelli
    • 1
  • K. Abbas
    • 1
  • J. Kozempel
    • 1
  • U. Holzwarth
    • 1
  • F. Franchini
    • 1
  • J. Ponti
    • 1
  • N. Gibson
    • 1
  • F. Rossi
    • 1
  1. 1.Institute for Health and Consumer ProtectionJoint Research Centre, European Commission, Cyclotron TP 500IspraItaly

Personalised recommendations