Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6507–6515 | Cite as

Continuous laser direct-writing of PbS nanoparticles inside transparent silica monoliths

  • Abdallah Chahadih
  • Hicham El HamzaouiEmail author
  • Rémy Bernard
  • Laurence Bois
  • Franc Beclin
  • Odile Cristini
  • Bruno Capoen
  • Mohamed Bouazaoui
Research Paper


Direct space-selective growth of PbS nanoparticles, embedded inside a transparent porous sol–gel derived silica matrix, has been achieved using continuous laser irradiation. Before the irradiation, the porous silica host has been soaked in a PbS precursor solution. The effect of the concentration of PbS precursors and of the incident laser power on the mean particle size was studied. Absorption spectroscopy, X-ray diffraction analysis, and TEM measurements were used to identify the PbS crystallites inside the xerogel and to estimate the average particle size. It has been shown that PbS crystallite sizes range between 3 and 13 nm depending on the PbS precursors concentration.


Lead sulfide Nanoparticles Semiconductors Silica xerogel Laser irradiation 



This study was supported by the French Agence Nationale de la Recherche (ANR) in the frame of the POMESCO project (Organized Photo-growth of Metallic and Semi-Conductor Nano-Objects Intended to Optic Devices), the “Conseil Régional Nord Pas de Calais Picardie” and the “Fonds Européen de Développement Economique des Régions”.


  1. Asunskis DJ, Bolotin IL, Wroble AT, Zachary AM, Hanley L (2008) Lead sulfide nanocrystal-polymer composites for optoelectronic applications. Macromol Symp 268:33–37CrossRefGoogle Scholar
  2. Bore MT, Pham HN, Switzer EE, Ward TL, Fukuoka A, Datye AK (2005) The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica. J Phys Chem B 109:2873–2880CrossRefGoogle Scholar
  3. Capoen B, Martucci A, Turrell S, Bouazaoui M (2003) Effects of the sol-gel solution host on the chemical and optical properties of PbS quantum dots. J Mol Struct 651–653:467–473CrossRefGoogle Scholar
  4. Cui F, Zhang J, Cui T, Liang S, Li B, Lin Q, Yang B (2008) From two-dimensional metal organic coordination networks to near-infrared luminescent PbS nanoparticle/layered polymer composite materials. Nano Res 1:195–202CrossRefGoogle Scholar
  5. Cullity BD (1987) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, ReadingGoogle Scholar
  6. Dementjev A, Gulbinas V (2009) Excited state absorption of PbS nanocrystals in silicate glass. Opt Mater 31:647–652CrossRefGoogle Scholar
  7. Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56:921–924CrossRefGoogle Scholar
  8. El Hamzaoui H, Courthéoux L, Nguyen VN, Berrier E, Favre A, Bigot L, Bouazaoui M, Capoen B (2010a) From porous silica xerogels to bulk optical glasses: The control of densification. Mater Chem Phys 121:83–88CrossRefGoogle Scholar
  9. El Hamzaoui H, Bernard R, Chahadih A, Chassagneux F, Bois L, Jegouso D, Hay L, Capoen B, Bouazaoui M (2010b) Laser-induced direct space-selective precipitation of CdS nanoparticles embedded in a transparent silica xerogel. Nanotechnology 21:134002CrossRefGoogle Scholar
  10. Günes S, Fritz KP, Neugebauer H, Sariciftci NS, Kumar S, Scholes GD (2007) Hybrid solar cells using PbS nanoparticles. Sol Energy Mater Sol Cells 91:420–423CrossRefGoogle Scholar
  11. Hodes G, Albu-Yaron A, Decker F, Motisuke P (1987) Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Phys Rev B 36:4215–4221CrossRefGoogle Scholar
  12. Il’in VI, Musikhiin SF, Bakueva LG, Rabizo OV, Rykov SA (1995) Quantum-size layered PbS/C structures deposited by pulsed laser evaporation in vacuum. Mater Sci Eng B 35:120–124CrossRefGoogle Scholar
  13. Liu S, Zhang H, Swihart MT (2009) Spray pyrolysis synthesis of ZnS nanoparticles from a single-source precursor. Nanotechnology 20:235603CrossRefGoogle Scholar
  14. Machol JL, Wise FW, Ramesh CP, Tanner DB (1993) Vibronic quantum beats in PbS microcrystallites. Phys Rev B 48:2819–2822CrossRefGoogle Scholar
  15. Malyarevich AM, Yumashev KV, Lipovskii AA (2008) Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasers. J Appl Phys 103:081301CrossRefGoogle Scholar
  16. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon, OxfordGoogle Scholar
  17. Parvathy NN, Pajonk GM, Venkateswara RA (1997) Processing and characterization of PbS nanocrystallites in TMOS silica xerogels. Mater Res Bull 32:397–408CrossRefGoogle Scholar
  18. Parvathy NN, Venkateswara RA, Pajonk GM (1998) Effects of temperature and sol-gel parameters on PbS crystallite sizes and their spectral and physical properties in a porous silica matrix. J Non-Cryst Sol 241:79–90CrossRefGoogle Scholar
  19. Sadovnikov SI, Kozhevnikova NS, Rempel AA (2009) Thermal stability of lead sulfide nanocrystalline films. Glass Phys Chem 35:60–66CrossRefGoogle Scholar
  20. Shim SM, Liu C, Kwon YK, Heo J (2010) Lead sulfide quantum dots formation in glasses controlled by erbium ions. J Am Ceram Soc 93:3092–3094CrossRefGoogle Scholar
  21. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interf Sci 8:127–133CrossRefGoogle Scholar
  22. Takeshima N, Kuroiwa Y, Narita Y, Tanaka S, Hirao K (2004) Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses. Opt Exp 12:4019–4024CrossRefGoogle Scholar
  23. Wang Y, Suna A, Mahler W, Kasowski R (1987) PbS in polymers. From molecules to bulk solids. J Chem Phys 87:7315–7322CrossRefGoogle Scholar
  24. Wang P, Jiang T, Zhu C, Zhai Y, Wang D, Dong S (2010) One-step, solvothermal synthesis of grapheme-CdS and grapheme-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res 3:794–799CrossRefGoogle Scholar
  25. Yang P, Song CF, Lü MK, Yin X, Zhou GJ, Xu D, Yuan DR (2001) The luminescence of PbS nanoparticles embedded in sol-gel silica glass. Chem Phys Lett 345:429–434CrossRefGoogle Scholar
  26. Yang YJ, He LY, Zhang QF (2005) A cyclic voltammetric synthesis of PbS nanoparticles. Electrochem Commun 7:361–364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Abdallah Chahadih
    • 1
  • Hicham El Hamzaoui
    • 1
    Email author
  • Rémy Bernard
    • 1
  • Laurence Bois
    • 2
  • Franc Beclin
    • 3
  • Odile Cristini
    • 1
  • Bruno Capoen
    • 1
  • Mohamed Bouazaoui
    • 1
  1. 1.Laboratoire de Physique des LasersAtomes et Molécules (CNRS, UMR 8523), IRCICA (FR CNRS 3024), CERLA (FR CNRS 2416)Villeneuve d’Ascq CedexFrance
  2. 2.Laboratoire des Multimatériaux et Interfaces (CNRS, UMR 5615)Villeurbanne CedexFrance
  3. 3.Laboratoire de Structure et Propriétés de l’Etat Solide (CNRS, UMR 8008)Villeneuve d’AscqFrance

Personalised recommendations