Facile synthesis of nanosized ε-Fe2O3 particles on the silica support

  • G. A. Bukhtiyarova
  • M. A. Shuvaeva
  • O. A. Bayukov
  • S. S. Yakushkin
  • O. N. MartyanovEmail author
Research Paper


An approach is suggested to synthesize the ε-Fe2O3 particles supported on silica with the mean size of few nanometers, narrow size distribution and no admixture of any other iron oxide polymorphs. The facile synthesis is based on the pore filling impregnation method by iron sulfate (II) water solution with the following annealing procedure at ~1173 K. It is shown that the ε-Fe2O3 nanoparticles obtained are stable up to ~1173 K and possess superparamagnetic behavior up to ~870 K.


Supported nanoparticles Heterogeneous catalysts Synthesis Magnetic nanoparticles Electron spin resonance 



The work was supported by Presidium of RAS through the program “Basic researches of nanomaterials and nanotechnologies”, project 27.46.


  1. Arena F, Gatti G, Stievano L, Martra G, Coluccia S, Frusteri F, Spadaro L, Parmaliana L (2006) Activity pattern of low-loaded FeOx/SiO2 catalysts in the selective oxidation of C1 and C3 alkanes with oxygen. Catal Today 117:75–79CrossRefGoogle Scholar
  2. Bachari K, Millet JMM, Bonville P, Cherifia O, Figueras F (2007) Spectroscopic characterization of iron nanoparticles in Fe-mesoporous silicate catalysts. J Catal 249:52–58CrossRefGoogle Scholar
  3. Barick KC, Varaprasad BS, Bahadur D (2010) Structural and magnetic properties of γ- and ε-Fe2O3 nanoparticles dispersed in silica matrix. J Non-Cryst Solids 356:153CrossRefGoogle Scholar
  4. Bukhtiyarova GA, Mart’yanov ON, Yakushkin SS, Shuvaeva MA, Bayukov OA (2010) State of iron in nanoparticles prepared by impregnation of silica gel and aluminum oxide with FeSO4 solutions. Phys Solid State 52:826–837CrossRefGoogle Scholar
  5. ChanCac C, Tronc E, Jolivet JP (1996) Magnetic iron oxide-silica nanocomposites. Synthesis and characterization. J Mater Chem 6:1905–1911CrossRefGoogle Scholar
  6. Ding Y, Morber JR, Snyder RL, Wang ZL (2007) Nanowire structural evolution from Fe3O4 to ε-Fe2O3. Adv Funct Mater 17:1172–1178CrossRefGoogle Scholar
  7. Dormann JL, Viart N, Rehspringer JL, Ezzir A, Niznansky D (1998) Magnetic properties of Fe2O3 particles prepared by sol-gel method. Hyperfine Interact 112:89–92CrossRefGoogle Scholar
  8. Fazeau G, Shilov V, Bacri JC, Dubois E, Gendron F, Perzynski R, Raikher YuL, Stepanov VI (1999) Magnetic resonance of nanoparticles in a ferrofluid: evidence of thermofluctuational effects. J Magn Magn Mater 202:535CrossRefGoogle Scholar
  9. Fujita M, Costas M, Que L Jr (2003) Iron-catalyzed olefin cis-dihydroxylation by H2O2: electrophilic versus nucleophilic mechanisms. J Am Chem Soc 125:9912–9913CrossRefGoogle Scholar
  10. Gelalcha FG, Bitterlich B, Anilkumar G, Tse M-K, Beller M (2007) Iron-catalyzed asymmetric epoxidation of aromatic alkenes using hydrogen peroxide. Angew Chem Int Ed 46:7293–7296CrossRefGoogle Scholar
  11. Gich M, Roig A, Taboada E, Molins E, Bonafosb C, Snoeck E (2007) Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. Faraday Discuss 136:345–354CrossRefGoogle Scholar
  12. Gondal MA, Hameed A, Yamani ZH, Suwaiyan A (2004) Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3. Appl Catal A 268:159–167CrossRefGoogle Scholar
  13. Jin J, Ohkoshi S, Hashimoto K (2004) Giant Coercive field of nanometer-sized iron oxide. Adv Mater 16:48–51CrossRefGoogle Scholar
  14. Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q, Wang Y, Takehira K (2005) Iron-containing MCM-41 catalysts for Baeyer-Villiger oxidation of ketones using molecular oxygen and benzaldehyde. J Mol Catal A 236:99–106CrossRefGoogle Scholar
  15. Kim DJ, Dunn BC, Huggins F, Huffman GP, Kang M, Yie JE, Eyring EM (2006) SBA-15-supported iron catalysts for Fischer-Tropsch production of diesel fuel. Energy Fuels 20:2608–2611CrossRefGoogle Scholar
  16. Legros J, Bolm C (2003) Iron-catalyzed asymmetric sulfide oxidation with aqueous hydrogen peroxide. Angew Chem Int Ed 42:5487–5489CrossRefGoogle Scholar
  17. Legros J, Bolm C (2005) Investigations on the iron-catalyzed asymmetric sulfide oxidation. Chem Eur J 11:1086–1092CrossRefGoogle Scholar
  18. Liu T, You H, Chen Q (2009) Heterogeneous photo-Fenton degradation of polyacrylamide in aqueous solution over Fe(III)-SiO2 catalyst. J Hazard Mater 162:860–865CrossRefGoogle Scholar
  19. Lu AH, Salabas EL, Schuth F (2007) Synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  20. Maeda M, Kuroda CS, Shimura T, Tada M, Abe M, Yamamuro S, Sumiyama K, Handa H (2006) Magnetic carriers of iron nanoparticles coated with a functional polymer for high throughput bioscreening. J Appl Phys 99:08H103–08H106. doi: 10.1063/1.2165127 CrossRefGoogle Scholar
  21. Martin SE, Garrone A (2003) Efficient solvent-free iron (III) catalyzed oxidation of alcohols by hydrogen peroxide. Tetrahedron Lett 44:549–552CrossRefGoogle Scholar
  22. Martinez F, Calleja G, Melero JA, Molina R (2007) Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Appl Catal B 70:452–460CrossRefGoogle Scholar
  23. Nakamura T, Yamada Y, Yano K (2006) Novel synthesis of highly monodispersed γ-Fe2O3/SiO2 and ε-Fe2O3/SiO2 nanocomposite spheres. J Mater Chem 16:2417–2419CrossRefGoogle Scholar
  24. Nakanishi M, Bolm C (2007) Iron-catalyzed benzylic oxidation with aqueous tert-butyl hydroperoxide. Adv Synth Catal 349:861–864CrossRefGoogle Scholar
  25. Oldenburg PD, Shteinman AA, LJr Que (2005) Iron-catalyzed olefin cis-dihydroxylation using a bio-inspired N,N,O-ligand. J Am Chem Soc 127:15672–15673CrossRefGoogle Scholar
  26. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRefGoogle Scholar
  27. Pelovski Y, Petkova V, Nikolov S (1996) Study of the mechanism of the thermochemical decomposition of ferrous sulphate monohydrate. Thermochim Acta 274:273–280CrossRefGoogle Scholar
  28. Petkova V, Pelovski Y (2001) Investigation on the thermal properties of Fe2O(SO4)2–Part II. J Therm Anal Calorim 64:1037–1044CrossRefGoogle Scholar
  29. Popovici M, Gich M, Niznansky D, Roig A, Savii C, Casas L, Molins E, Zaveta K, Enache C, Sort J, de Brion S, Chouteau G, Nogue′s J (2004) Optimized synthesis of the elusive ε-Fe2O3 phase via sol-gel chemistry. J Chem Mater 16:5542–5548CrossRefGoogle Scholar
  30. Reichert D, Bockhorn H, Kureti S (2008) Study of the reaction of NOx and soot on Fe2O3 catalyst in excess of O2. Appl Catal B 80:248–259CrossRefGoogle Scholar
  31. Sacurai S, Namai A, Hashimoto K, Ohkoshi S (2009) First observation of phase transformation of all four Fe2O3 Phases (γ- > ε- > β- > α-phase). J Am Chem Soc 131:18299–18303CrossRefGoogle Scholar
  32. Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) DRIFTS study of the water-gas shift reaction over Au/Fe2O3. J Catal 243:171–182CrossRefGoogle Scholar
  33. Tadic M, Spasojevic V, Kusigerski V, Markovic D, Remskar M (2008) Formation of ε-Fe2O3 phase by the heat treatment of α-Fe2O3/SiO2 nanocomposite. Scripta Mater 58:703–706CrossRefGoogle Scholar
  34. Tronc E, Chaneac C, Jolivet JP (1998) Structural and magnetic characterization of ε-Fe2O3. J Sol Stat Chem 139:93–104CrossRefGoogle Scholar
  35. Zboril R, Mashlan M, Barcova K, Vujtek M (2002) Thermally induced solid-state syntheses of γ-Fe2O3 nanoparticles and their transformation to α-Fe2O3 via ε-Fe2O3. Hyperfine Interact 139–140:597–606CrossRefGoogle Scholar
  36. Zboril R, Mashlan M, Papaefthymiou V, Hadjipanayis G (2003) Thermal decomposition of Fe2(SO4)3: demonstration of Fe2O3 polymorphism. J Radioanal Nucl Chem 255:413–417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. A. Bukhtiyarova
    • 1
  • M. A. Shuvaeva
    • 1
  • O. A. Bayukov
    • 2
  • S. S. Yakushkin
    • 1
  • O. N. Martyanov
    • 1
    Email author
  1. 1.Boreskov Institute of CatalysisRussian Academy of SciencesNovosibirskRussia
  2. 2.Kirensky Institute of PhysicsRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations