Size and temperature dependent stability and phase transformation in single-crystal zirconium nanowire

  • Vijay Kumar Sutrakar
  • D. Roy Mahapatra
Research Paper


A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions <20 Å are found unstable in nature, and they undergo a FCC → HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions >20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.


Molecular dynamics Phase transformations Nanowire Zirconium Nanostructured materials Stability Modeling and simulation 


  1. Bacon DJ, Vitek V (2002) Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals. Metall Mater Trans A 33:721–733Google Scholar
  2. Cheng Q, Wu HA, Wang Y, Wang XX (2009) Pseudoelasticity of Cu–Zr nanowires via stress-induced martensitic phase transformations. Appl Phys Lett 95:021911CrossRefGoogle Scholar
  3. Clausius R (1870) On a mechanical theorem applicable to heat. Phil Mag 40:122–127Google Scholar
  4. Coura PZ, Legoas SB, Moreira AS, Sato F, Rodrigures V, Dantas SO, Ugarte D, Galvao DS (2004) On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett 4(7):1187–1191CrossRefGoogle Scholar
  5. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453CrossRefGoogle Scholar
  6. Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Rep 9:251–310CrossRefGoogle Scholar
  7. Diao J, Gall K, Dunn ML (2003) Surface stress-induced phase transformation in metal nanowires. Nat Mater 2(10):656–660CrossRefGoogle Scholar
  8. Domain C, Legris A (2005) Ab initio atomic-scale determination of point-defect structure in hcp zirconium. Phil Mag A 85:569Google Scholar
  9. Engin C, Urbassek HM (2008) Molecular-dynamics investigation of the fcc → bcc phase transformation in Fe. Comp Mat Sci 41(3):297–304CrossRefGoogle Scholar
  10. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985CrossRefGoogle Scholar
  11. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  12. Hoover WG (1985) Canonical dynamics equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  13. Lao J, Moldovan D (2008) Surface stress induced structural transformations and pseudoelastic effects in palladium nanowires. Appl Phys Lett 93:093108CrossRefGoogle Scholar
  14. Levchenko EV, Evteev AV, Riley DP, Belova IV, Murch GE (2010) Molecular dynamics simulation of the alloying reaction in Al-coated Ni nanoparticle. Comp Mat Sci 47(3):712–720CrossRefGoogle Scholar
  15. Liang W, Zhou M, Ke F (2005) Shape memory effect in Cu nanowires. Nano Lett 5(10):2039–2043CrossRefGoogle Scholar
  16. Lieber CM (2003) Nanoscale science and technology: building a big future from small things. MRS Bull 28:7CrossRefGoogle Scholar
  17. Mclellan AG (1974) Virial theorem generalized. Am J Phys 42:239–243CrossRefGoogle Scholar
  18. Mendelev MI, Ackland GJ (2007) Development of an interatomic potential for the simulation of phase transformations in zirconium. Phil Mag Lett 87(5):349–359CrossRefGoogle Scholar
  19. Meyer R, Entel P (1998) Computer simulations of martensitic transformations in NiAl alloys. Comp Mat Sci 10(1–4):10–15CrossRefGoogle Scholar
  20. Morris JR, Ye YY, Ho KM et al (1995) Structures and energies of compression twin boundaries in hcp Ti and Zr. Phil Mag A 72:751CrossRefGoogle Scholar
  21. Nakano A (2008) A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation. Comp Phys Comm 178: 280–289CrossRefGoogle Scholar
  22. Nose SA (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRefGoogle Scholar
  23. Osetsky YN, Bacon DJ, de Diego N (2002) Anisotropy of point defect diffusion in alpha-zirconium. Metall Mater Trans A 33:777Google Scholar
  24. Park HS (2006) Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires. Nano Lett 6(5):958–962CrossRefGoogle Scholar
  25. Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8:4CrossRefGoogle Scholar
  26. Pinsook U, Ackland GJ (2000) Atomistic simulation of shear in a martensitic twinned microstructure. Phys Rev B 62:5427CrossRefGoogle Scholar
  27. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  28. Saitoh K, Liu WK (2009) Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Comp Mat Sci 46(2):531–544CrossRefGoogle Scholar
  29. Serra A, Bacon DJ (1996) A new model for 10 12 twin growth in hcp metals. Phil Mag A 73:333CrossRefGoogle Scholar
  30. Sutrakar VK, Roy Mahapatra D (2008) Formation of stable ultra-thin pentagon Cu nanowires under high strain rate loading. J Phys Condens Matter 20:206–335CrossRefGoogle Scholar
  31. Sutrakar VK, Roy Mahapatra D (2009a) Coupled effect of size, strain rate, and temperature on the shape memory of a pentagonal Cu nanowire. Nanotechnology 20:045701CrossRefGoogle Scholar
  32. Sutrakar VK, Roy Mahapatra D (2009b) Stress-induced phase transformation and pseudo-elastic/pseudo-plastic recovery in intermetallic Ni–Al nanowires. Nanotechnology 20:257505Google Scholar
  33. Sutrakar VK, Roy Mahapatra D (2009c) Stress-induced martensitic phase transformation in Cu-Zr nanowires. Mater Lett 63:1289–1292CrossRefGoogle Scholar
  34. Sutrakar VK, Roy Mahapatra D (2010) Single and multi-step phase transformation in CuZr nanowire under compressive/tensile loading. Intermetallics 18:679–687CrossRefGoogle Scholar
  35. Sutrakar VK, Roy Mahapatra D (2011) Universal stability and temperature dependent phase transformation in group VIIIB-IB transition metal FCC nanowires. J Phys Chem-C 115:10394–10398CrossRefGoogle Scholar
  36. Swenson RJ (1983) Comments on virial theorems for bounded systems. Am J Phys 51:940–942CrossRefGoogle Scholar
  37. Trubitsyn VY, Dolgusheva EB, Salamatov EI (2005) Simulation of α-Zr structural stability under pressure using the molecular dynamics method. Phys Solid State 47:1797CrossRefGoogle Scholar
  38. Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70:1375–1382CrossRefGoogle Scholar
  39. Willaime F, Massobrio C (1989) Temperature-induced hcp-bcc phase transformation in zirconium: a lattice and molecular-dynamics study based on an N-body potential. Phys Rev Lett 63:2244CrossRefGoogle Scholar
  40. Zhou M (2003) A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc R Soc A 459:2347–2392CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Aeronautical Development Establishment, Defence Research and Development OrganizationBangaloreIndia
  2. 2.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  3. 3.Aeronautical Development Agency, Ministry of DefenceBangaloreIndia

Personalised recommendations