Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5727–5737 | Cite as

Magnesium nanoparticles with transition metal decoration for hydrogen storage

  • Luca PasquiniEmail author
  • Elsa Callini
  • Matteo Brighi
  • Federico Boscherini
  • Amelia Montone
  • Torben R. Jensen
  • Chiara Maurizio
  • Marco Vittori Antisari
  • Ennio Bonetti
Special Issue: Nanostructured Materials 2010

Abstract

We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm–1 μm) with metal-oxide core–shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg–Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

Keywords

Hydrogen storage Nanoparticles Inert gas condensation Magnesium Transition metals Transformation kinetics Energy storage 

Notes

Acknowledgments

The work was supported by the Italian Ministry for University and Research under project FISR-TEPSI, the Danish National Research Foundation (Center for Materials Crystallography), the Danish Strategic Research Council (Center for Energy Materials) and the Danish Research Council for Nature and Universe (Danscatt). We are grateful to the Carlsberg Foundation.

References

  1. Barkhordarian G, Klassen T, Bormann R (2006) Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J Phys Chem B 110:11020–11024CrossRefGoogle Scholar
  2. Boscherini F, de Panfilis S, Weissmuller J (1998) Determination of local structure in nanophase palladium by X-ray absorption spectroscopy. Phys Rev B 57:3365–3374CrossRefGoogle Scholar
  3. Callini E, Pasquini L, Piscopiello E, Montone A, Vittori Antisari M, Bonetti E (2009) Hydrogen sorption in Pd-decorated Mg-MgO core–shell nanoparticles. Appl Phys Lett 94:221905CrossRefGoogle Scholar
  4. Callini E, Pasquini L, Rude LH, Nielsen TK, Jensen TR, Bonetti E (2010) Hydrogen storage and phase transformations in Mg-Pd nanoparticles. J Appl Phys 108:073513CrossRefGoogle Scholar
  5. Eberle U, Felderhoff M, Schüth F (2009) Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed 48:6608–6630CrossRefGoogle Scholar
  6. Friedrichs O, Olodziejczyk L, Sánchez-Lápez JC, López-Cartés C, Fernández A (2007) Synthesis of nanocrystalline MgH2 powder by gas-phase condensation and in situ hydridation: TEM, XPS and XRD study. J Alloys Compd 434–435:721–724CrossRefGoogle Scholar
  7. Gremaud R, Baldi A, Gonzalez-Silveira M, Dam B, Griessen R (2008) Chemical short-range order and lattice deformations in MgyTi1−yHx thin films probed by hydrogenography. Phys Rev B 77:144204CrossRefGoogle Scholar
  8. Gross AF, Ahn CC, Van Atta SL, Liu P, Vajo JJ (2009) Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology 20:204005CrossRefGoogle Scholar
  9. Huot J, Yonkeu A, Dufour J (2009) Rietveld analysis of neutron powder diffraction of Mg6Pd alloy at various hydriding stages. J Alloys Compd 475:168–172CrossRefGoogle Scholar
  10. Jones DJ, Rozière J, Aleandri LE, Bogdanović B, Huckett SC (1992) Intermetallic phases in the magnesium-palladium system: X-ray absorption spectroscopic characterization of the amorphous alloy MgPdCxHy. Chem Mater 4:620–625CrossRefGoogle Scholar
  11. Krishnan G, Kooi BJ, Palasantzas G, Pivak Y, Dam B (2010) Thermal stability of gas phase magnesium nanoparticles. J Appl Phys 107:053504CrossRefGoogle Scholar
  12. Li WY, Li CS, Ma H, Chen J (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129:6710CrossRefGoogle Scholar
  13. Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instrum Methods Phys Res B 268:334–340CrossRefGoogle Scholar
  14. Makongo JP, Prots Y, Burkhardt U, Niewa R, Kudla C, Kreiner G (2006) A case study of complex metallic alloy phases: structure and disorder phenomena of Mg-Pd compounds. Philos Mag 86:427–433CrossRefGoogle Scholar
  15. Montone A, Grbovic J, Vittori Antisari M, Bassetti A, Bonetti E, Fiorini AL, Pasquini L, Mirenghi L, Rotolo P (2007) Nano-microMgH2·Mg2NiH4 composites: tayloring a multichannel system with selected hydrogen sorption properties. Int J Hyd Energy 32:2926–2934CrossRefGoogle Scholar
  16. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–324CrossRefGoogle Scholar
  17. Nielsen TK, Manickam K, Hirscher M, Besenbacher F, Jensen TR (2009) Confinement of MgH2 nanoclusters within nanoprous aerogel scaffold materials. ACS Nano 3:3521–3528CrossRefGoogle Scholar
  18. Pasquini L, Callini E, Piscopiello E, Montone A, Vittori Antisari M, Bonetti E (2009) Metal-hydride transformation kinetics in Mg nanoparticles. Appl Phys Lett 94:041918CrossRefGoogle Scholar
  19. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129CrossRefGoogle Scholar
  20. Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X (2009) Adsorption and dissociation of hydrogen on MgO surface: a first principle study. J Alloys Compd 480:788–793CrossRefGoogle Scholar
  21. Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z (2008) Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys Rev Lett 100:206806CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Luca Pasquini
    • 1
    Email author
  • Elsa Callini
    • 1
  • Matteo Brighi
    • 1
  • Federico Boscherini
    • 1
    • 4
  • Amelia Montone
    • 2
  • Torben R. Jensen
    • 3
  • Chiara Maurizio
    • 4
  • Marco Vittori Antisari
    • 2
  • Ennio Bonetti
    • 1
  1. 1.Department of Physics and CNISMUniversity of BolognaBolognaItaly
  2. 2.ENEARomeItaly
  3. 3.Department of Chemistry, Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
  4. 4.IOM-CNR, GILDA BeamlineGrenobleFrance

Personalised recommendations