Electronic structure effects on stability and quantum conductance in 2D gold nanowires

  • Vikas Kashid
  • Vaishali Shah
  • H. G. Salunke
Research Paper


In this study, we have investigated the stability and conductivity of unsupported, two-dimensional infinite gold nanowires using ab initio density functional theory (DFT). Two-dimensional ribbon-like nanowires with 1–5 rows of gold atoms in the non-periodic direction and with different possible structures have been considered. The nanowires with >2 rows of atoms exhibit dimerization, similar to finite wires, along the non-periodic direction. Our results show that in these zero thickness nanowires, the parallelogram motif is the most stable. A comparison between parallelogram- and rectangular-shaped nanowires of increasing width indicates that zero thickness (111) oriented wires have a higher stability over (100). A detailed analysis of the electronic structure, reveals that the (111) oriented structures show increased delocalization of s and p electrons in addition to a stronger delocalization of the d electrons and hence are the most stable. The density of states show that the nanowires are metallic and conducting except for the double zigzag structure, which is semiconducting. Conductance calculations show transmission for a wide range of energies in all the stable nanowires with more than two rows of atoms. The conductance channels are not purely s and have strong contributions from the d levels, and weak contributions from the p levels.


2D nanowires Au Conductivity Electronic structure calculations Density functional theory Quantum effects Modeling and simulation 



This study was performed using BARC mainframe supercomputers (ajeya and ameya). The authors thank Dilip G Kanhere and Stefan Blügel for their stimulating discussions. V. S. would like to thank Dept. of Science and Technology, Govt. of India for their funding support. V.K. thanks BARC for financial support. V. K. and V. S. wish to thank the kind hospitality of Bioinformatics Center, University of Pune and Institute of Bioinformatics and Biotechnology, University of Pune, during the course of this study.


  1. Bettini J, Rodrigues V, González J, Ugarte G (2005) Real-time atomic resolution study of metal nanowires. Appl Phys A 81:1513–1518CrossRefGoogle Scholar
  2. Dreher M, Pauly F, Heurich J, Cuevas J, Scheer E, Nielaba P (2005) Structure and conductance histogram of atomic-sized Au contacts. Phys Rev B 72:075435CrossRefGoogle Scholar
  3. Enomoto A, Kurokawa S, Sakai A (2002) Quantized conductance in Au-Pd and Au-Ag alloy nanocontacts. Phys Rev B 65:125410CrossRefGoogle Scholar
  4. Fioravante F, Nunes RW (2007) Semiconducting chains of gold and silver. Appl Phys Lett 91(22):223115CrossRefGoogle Scholar
  5. Imry Y, Landauer R (1999) Conductance viewed as transmission. Rev Mod Phys 71(2):S306–S312CrossRefGoogle Scholar
  6. Jepsen O, Andersen OK (1995) Calculated electronic structure of the sandwich of d1 metals LaI2 and CeI2: application of new LMTO techniques. Z Phys B 97:35–47CrossRefGoogle Scholar
  7. Ke L, Schilfgaarde M, Kotani T, Bennet P (2007) Ballistic conductance calculation of atomic-scale nanowires of Au and Co. Nanotechnology 18:095709CrossRefGoogle Scholar
  8. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50CrossRefGoogle Scholar
  9. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  10. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1):558–561CrossRefGoogle Scholar
  11. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  12. Kurui Y, Oshima Y, Okamoto M, Takayanagi K (2009) Conductance quantization and dequantization in gold nanowires due to multiple reflection at the interface. Phys Rev B 79(16):165414CrossRefGoogle Scholar
  13. Mares AI, Otte AF, Soukiassian LG, Smit RHM, van Ruitenbeek JM (2004) Observation of electronic and atomic shell effects in gold nanowires. Phys Rev B 70(7):073401CrossRefGoogle Scholar
  14. Nakamura J, Kobayashi N, Aono M (2001) Electronic states and structural stability of gold nanowires. RIKEN Rev 37:17–20Google Scholar
  15. Oetzel B, Bechstedt F, Hannewald K (2010) Finite-size modelling of electrodes for quantum transport calculations using k-space ab initio techniques. Comp Phys Commun 181:746–749CrossRefGoogle Scholar
  16. Oetzel B, Preuss M, Ortmann F, Hannewald K, Bachstedt F (2008) Quantum transport through nanowires: ab initio studies using plane waves and supercell. Phys Stat Sol B 245(5):854–858CrossRefGoogle Scholar
  17. Ohnishi H, Kondo Y, Takayanagi K (1998) Quantized conductance through individual rows of suspended gold atoms. Nature 395:780–783CrossRefGoogle Scholar
  18. Okamoto M, Takayanagi K (1999) Structure and conductance of a gold atomic chain. Phys Rev B 60(11):7808–7811CrossRefGoogle Scholar
  19. Peierls RE (1955) Quantum theory of solids. Oxford University Press, LondonGoogle Scholar
  20. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687CrossRefGoogle Scholar
  21. Pulay P (2000) Convergence acceleration of iterative sequences: the case of SCF iteration. Chem Phys Lett 73(2):393–399CrossRefGoogle Scholar
  22. Rego LGC, Rocha A, Rodrigues V, Ugarte D (2003) Role of structural evolution in the quantum conductance behavior and of gold nanowires during stretching. Phys Rev B 67:045412CrossRefGoogle Scholar
  23. Rodrigues V, Fuhrer T, Ugarte D (2000) Signature of atomic structure in the quantum conductance of gold nanowires. Phys Rev Lett 85:4124CrossRefGoogle Scholar
  24. Rodrigues V, Ugarte D (2001) Structural and electronic properties of gold nanowires. Eur Phys J D 16:395CrossRefGoogle Scholar
  25. Sánchez-Portal D, Artacho E, Junquera J, García A, Soler JM (2001) Zigzag equilibrium structure in monatomic wires. Surf Sci 482(485):1261–1265CrossRefGoogle Scholar
  26. Sánchez-Portal D, Artacho E, Junquera J, Ordejón P, García A, Soler JM (1999) Stiff monatomic gold wires with a spinning zigzag geometry. Phys Rev Lett 83(19):3884–3887CrossRefGoogle Scholar
  27. Seal P, Chakrabarti S (2007) Scaler relativistic effects on lattice dimerization in metastable gold nanowire of finite length. Chem Phys 335:201–204CrossRefGoogle Scholar
  28. Skorodumova NV, Simak SI (2004) Stabilization of monoatomic gold wires by carbon impurities. Solid State Commun 130:755–757CrossRefGoogle Scholar
  29. Tavazza F, Levine LE, Chaka AM (2009) Elongation and breaking mechanisms of gold nanowires under a wide range of tensile conditions. J Appl Phys 106(4):043522CrossRefGoogle Scholar
  30. Tavazza F, Levine LE, Chaka AM (2010) Structural changes during the formation of gold single-atom chains: stability criteria and electronic structure. Phys Rev B 81(23):235424CrossRefGoogle Scholar
  31. Teter MP, Payne MC, Allan DC (1989) Solution of Schrödinger’s equation for large systems. Phys Rev B 40(18):12255–12263CrossRefGoogle Scholar
  32. Thygesen KS, Bollinger MV, Jacobsen KW (2003) Conductance calculations with a wavelet basis set. Phys Rev B 67(11):115404CrossRefGoogle Scholar
  33. Torres J, Tosatti E, Corso AD, Ercolessi F, Koganoff JJ, Tolla FDD, Soler JM (1999) The puzzling stability of monatomic gold wires. Surf Sci 426:L441–L446CrossRefGoogle Scholar
  34. Treske U, Ortmann F, Oetzel B, Hannewald K, Bechstedt F (2010) Electronic and transport properties of graphene nanoribbons. Phys Status Solidi A 207(2):304–308CrossRefGoogle Scholar
  35. Štich I, Car R, Parrinello M, Baroni S (1989) Conjugate gradient minimization of the energy functional: a new method for electronic structure calculation. Phys Rev B 39(8):4997–5004CrossRefGoogle Scholar
  36. Xiao L, Tollberg B, Hu X, Wang L (2006) Structural study of gold clusters. J Chem Phys 124(11):114309CrossRefGoogle Scholar
  37. Yanson AI, Bollinger GR, van den Brom HE, Agraït N, van Ruitenbeek JM (1998) Formation and manipulation of a metallic wire of single gold atoms. Nature 395:783–785CrossRefGoogle Scholar
  38. Zarechnaya E, Skorodumova N, Simak S, Johansson B, Isaev E (2008) Theoretical study of linear monoatomic nanowires, dimer and bulk of Cu, Ag, Au, Ni, Pd and Pt. Comp Mater Sci 43:522–530CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PunePuneIndia
  2. 2.Interdisciplinary School of Scientific ComputingUniversity of PunePuneIndia
  3. 3.Technical Physics DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations