Random nanoparticle deposition: inter-particle distances in 2D, 3D, and multilayer samples

Research Paper

Abstract

We consider diluted assemblies of particles randomly distributed on a surface (2D samples), in a volume (3D samples) or in 2D layers separated with a spacer of thickness t (multilayer samples). Among various considerations on the inter-particle separations, a special interest is given to the nearest-neighbor distance distribution. We also discuss the influence of the particle size, by looking at the edge-to-edge distance, and analyze the particle distribution beyond the nearest-neighbor. Moreover, we investigate the particular case of multilayer samples, which to our knowledge has never been discussed. Finally, we experimentally illustrate the applicability of the random deposition model.

Keywords

Random cluster deposition Nanoparticle assemblies Nearest-neighbor distance Multilayer nanoparticle samples Surface science 

Notes

Acknowledgment

The author acknowledges A. Tamion for fruitful discussions.

References

  1. Bansmann J et al (2005) Magnetic and structural properties of isolated and assembled clusters. Surf Sci Rep 56:189–275. doi:10.1016/j.surfrep.2004.10.001 CrossRefGoogle Scholar
  2. Beneš V, Lechnerová R, Klebanová L, Slámová M, Sláma P (2009) Statistical comparison of the geometry of second-phase particles. Mater Character 60:1076–1081. doi:10.1016/j.matchar.2009.02.016 CrossRefGoogle Scholar
  3. Binns C et al (2005) The behaviour of nanostructured magnetic materials produced by depositing gas-phase nanoparticles. J Phys D 38:R357–R379. doi:10.1088/0022-3727/38/22/R01 CrossRefGoogle Scholar
  4. Dobrynin AN et al (2006) Influence of finite size effects on exchange anisotropy in oxidized Co nanocluster assembled films. Phys Rev B 73:245416. doi:10.1103/PhysRevB.73.245416 CrossRefGoogle Scholar
  5. Evans JW (1993) Random and cooperative sequential adsorption. Rev Mod Phys 65:1281–1329CrossRefGoogle Scholar
  6. Fauth K et al (2010) Magnetic properties of Fe nanoclusters on Cu(111) studied with X-ray magnetic circular dichroism. Phys Status Solidi B 247:1170–1179. doi:10.1002/pssb.200945607 CrossRefGoogle Scholar
  7. Hertz P (1909) Über den gegenseitigen durchschnittlichen Abstand yon Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind. Math Ann 67:387–398CrossRefGoogle Scholar
  8. Hinrichsen EL, Feder J, Jøssang T (1986) Geometry of Random Sequential Adsorption. J Statist Phys 44:793–827CrossRefGoogle Scholar
  9. Kleibert A, Passig J, Meiwes-Broer KH, Getzlaff M, Bansmann J (2007) Structure and magnetic moments of mass-filtered deposited nanoparticles. J Appl Phys 101:114318. doi:10.1063/1.2745330 CrossRefGoogle Scholar
  10. Leggoe JW (2006) A technique for characterizing spatial distributions of particles based on Nth-nearest neighbor statistics. J Mater Sci 41:5718–5722. doi:10.1007/s10853-006-0097-5 CrossRefGoogle Scholar
  11. Leggoe JW, Riggs JB (2006) Nth-nearest neighbor statistics for three-dimensional equilibrium arrays of monodisperse spheres. Mater Sci Eng A 426:289–297. doi:10.1016/j.msea.2006.04.017 CrossRefGoogle Scholar
  12. Milchev A (1994) On the spatial and temporal distribution of clusters. J Chem Phys 100:5160–5164CrossRefGoogle Scholar
  13. Perez A et al (2005) Functionalized cluster-assembled magnetic nanostructures for applications to high integration-density devices. Adv Eng Mater 7:475–485. doi:10.1002/adem.200400220 CrossRefGoogle Scholar
  14. Perez A et al (2010) Functional nanostructures from clusters. Int J Nanotechnol 7:523–574CrossRefGoogle Scholar
  15. Rintoul MD, Torquato S, Tarjus G (1996) Nearest-neighbor statistics in a one-dimensional random sequential adsorption process. Phys Rev E 53:450–457CrossRefGoogle Scholar
  16. Rohart S et al (2006) Magnetic anisotropy of CoxPt1-x clusters embedded in a matrix: influences of the cluster chemical composition and the matrix nature. Phys Rev B 74:104408. doi:10.1103/PhysRevB.74.104408 CrossRefGoogle Scholar
  17. Schaaf P, Talbot J (1989a) Surface exclusion effects in adsorption processes. J Chem Phys 91:4401–4409CrossRefGoogle Scholar
  18. Schaaf P, Talbot J (1989b) Kinetics of random sequential adsorption. Phys Rev Lett 62:175–178CrossRefGoogle Scholar
  19. Tainoff et al (2008) Self-organization of size-selected bare platinum nanoclusters: toward ultra-dense catalytic systems. J Phys Chem C 112:6842–6849CrossRefGoogle Scholar
  20. Tamion A, Hillenkamp M, Tournus F, Bonet E, Dupuis V (2009) Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures. Appl Phys Lett 95:062503. doi:10.1063/1.3200950 CrossRefGoogle Scholar
  21. Tamion A et al (2010) Magnetic anisotropy of embedded Co nanoparticles: influence of the surrounding matrix. Phys Rev B 81:144403. doi:10.1103/PhysRevB.81.144403 CrossRefGoogle Scholar
  22. Tewari A, Gokhale AM (2004) Nearest-neighbor distances between particles of finite size in three-dimensional uniform random microstructures. Mater Sci Eng A 385:332–341. doi:10.1016/j.msea.2004.06.049 Google Scholar
  23. Tewari A, Gokhale AM (2005) Nearest neighbor distances in uniform-random poly-dispersed microstructures. Mater Sci Eng A 396:22–27. doi:10.1016/j.msea.2004.12.034 CrossRefGoogle Scholar
  24. Tewari A, Gokhale AM (2006) Nearest-neighbor distributions in thin films, sheets, and plates. Acta Mater 54:1957–1963. doi:10.1016/j.actamat.2005.12.017 CrossRefGoogle Scholar
  25. Torquato S (1995a) Nearest-neighbor statistics for packings of hard spheres and disks. Phys Rev E 51:3170–3182CrossRefGoogle Scholar
  26. Torquato S (1995b) Mean nearest-neighbor distance in random packings of hard D-dimensional spheres. Phys Rev Lett 74:2156–2159CrossRefGoogle Scholar
  27. Torquato S, Lu B, Rubinstein J (1990) Nearest-neighbor distribution functions in many-body systems. Phys Rev A 41:2059–2075CrossRefGoogle Scholar
  28. Tournus F (2011) Multimer formation for 2D random nanoparticle deposition. Phys Rev E. doi:10.1103/PhysRevE.00.001600
  29. Tournus F et al (2008) Evidence of L10 chemical order in CoPt nanoclusters: Direct observation and magnetic signature. Phys Rev B 77:144411. doi:10.1103/PhysRevB.77.144411 CrossRefGoogle Scholar
  30. Tournus F, Blanc N, Tamion A, Hillenkamp M, Dupuis V (2010) Dispersion of magnetic anisotropy in size-selected CoPt clusters. Phys Rev B 81:220405(R). doi:10.1103/PhysRevB.81.220405 CrossRefGoogle Scholar
  31. Tournus F, Tamion A, Blanc N, Hillion A, Dupuis V (2011) Signature of multimers on magnetic susceptibility curves for mass-selected Co particles. J Appl Phys 109:07B502. doi:10.1063/1.3535554 CrossRefGoogle Scholar
  32. Wegner K, Piseri P, Vahedi Tafreshi H, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D 39:R439–R459. doi:10.1088/0022-3727/39/22/R02 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.LPMCN, UMR 5586 CNRS & Université de LyonVilleurbanneFrance

Personalised recommendations