Advertisement

Synthesis of SnO2 tubular nanostructures on top of a silicon nitride surface using polymeric templates and their characterization as gas sensor

  • A. G. LeyvaEmail author
  • M. Granada
  • D. F. Rodriguez
  • H. E. Troiani
Research Paper

Abstract

Uniform polycrystalline SnO2 microtubes formed by sintered nanoparticles (fixed to a surface or in free standing form) were obtained with the infiltration technique using SnCl4 as precursor and a porous polycarbonate (PC) film as template. The advantage of this synthesis method was based on its simplicity, reproducibility, low cost, and the possible applicability to other complex oxides. The morphology and crystal structure of SnO2 tubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The crystalline sizes of the nanoparticles assembled in the tube walls obtained at 600 °C were in the range of 5–7 nm, calculated from both the XRD and the TEM data. The length of the microtubes fixed to a silicon nitride surface ranged between 2 and 7 μm. Sensors fabricated with this material showed unusual sensitivity to ethanol at room temperature and fast reversible response, as compared to those obtained by the deposition of metallic tin film and further oxidation (Rheotaxial Growth and Thermal Oxidation method).

Keywords

Tin oxide SnO2 microtubes Gas sensor Polycarbonate membrane Template 

Notes

Acknowledgments

A. G. Leyva thanks the financial support of the Universidad Nacional de San Martín Project A-083. The authors wish to acknowledge support provided by the IMM-CNR Bologna.

References

  1. Briand D, Krauss A, Van der Schoot B, Weimar U, Barsan N, Gopel W, de Rooij NF (2000) Design and fabrication of high-temperature hotplates for drop-coated gas sensors. Sens Actuators B 68:223–233CrossRefGoogle Scholar
  2. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications ISBN 1–86094-480–9. Imperial College Press, LondonCrossRefGoogle Scholar
  3. Comini E, Faglia G, Sberveglieri G, Panand Z, Wang Z (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871CrossRefGoogle Scholar
  4. Dieguez A, Romano-Rodriguez A, Morante JR, Nelli P, Sangaletti L, Sberveglieri G (1999) Analysis of thermal oxidation of tin droplets and its implication on gas sensor stability. J Electrochem Soc 146(9):3527–3535CrossRefGoogle Scholar
  5. Gordillo G, Moreno LC, Cruz WDL, Teheran P (1994) Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors (ISSN 0040–6090). Thin Solid Films 252(1):61–66CrossRefGoogle Scholar
  6. Huang J, Matsunaga N, Shimanoe K, Yamazoe N, Kunitake T (2005) Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing. Chem Mater 17:3513–3518CrossRefGoogle Scholar
  7. Law M, Kind H, Messer B, Kim F, Yang P (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41:2405–2408CrossRefGoogle Scholar
  8. Levy P, Leyva AG, Troiani H, Sanchez RD (2003) Nanotubes of rare-earth manganese oxide. Appl Phys Lett 83:5247–5249CrossRefGoogle Scholar
  9. Leyva AG, Stoliar P, Rosenbusch M, Levy P, Curiale J, Troiani H, Sanchez RD (2004a) Synthesis route for obtaining manganese oxide based nanostructures. Phys B 354(1–4):158–160CrossRefGoogle Scholar
  10. Leyva AG, Stoliar P, Rosenbusch M, Lorenzo V, Levy P, Albonetti C (2004b) Microwave assisted synthesis of manganese mixed oxide nanostructures using plastic templates. J Solid State Chem 177:3949–3953CrossRefGoogle Scholar
  11. Li PJ, Lei M, Wang X, Tang WH (2009) Large-scale SnO2 nanowires synthesized by direct sublimation method and their enhanced dielectric responses. Mater Lett 63:357–359CrossRefGoogle Scholar
  12. Liu Y, Liu ML (2005) Growth of aligned square-shaped SnO2 tube arrays. Adv Funct Mater 15:57–62CrossRefGoogle Scholar
  13. Oldham NC, Hill CJ, Garland CM, McGill TC (2002) Deposition of Ga2O3-x ultrathin films on GaAs by e-beam evaporation. J Vac Sci Technol A 20(3):809–881CrossRefGoogle Scholar
  14. Prakash A, Majumdar S, Devi PS, Sen A (2009) Polycarbonate membrane assisted growth of pyramidal SnO2 particles. J Membr Sci 326:388–391CrossRefGoogle Scholar
  15. Rodríguez DF, Lerner B, Perez MS, Ibañez FA, Leyva AG, Bonaparte JA, Rinaldi CA, Boselli A, Lamagna A (2009) Comparison of the gas sensing properties of thin film SnO2 produced by RGTO and pore wetting technique. Am Inst Phys 1137:377–380Google Scholar
  16. Sahraei AO, Khodadadi A, Mortazavi Y, Naseh VM, Mosadegh S (2009) Low Temperature Ethanol Gas Sensor based on SnO2/MWNTs Nanocomposite. World Acad Sci Eng Technol 49:185Google Scholar
  17. Sberviglieri G et al (1990) A new technique for growing large surface area SnO2 thin film. Semicond Sci Technol 5:1231–1233CrossRefGoogle Scholar
  18. Starke TKH, Coles GSV (2003) Laser ablated nanocrystalline SnO2 material for low-level CO detection. Sens Actuators B Chem 88(3):227–233CrossRefGoogle Scholar
  19. Sundqvist J, Ottosson M, Hårsta A (2004) CVD of epitaxial SnO2 films by the SnI4/O2 precursor combination. Chem Vap Depos 10(2):77–82CrossRefGoogle Scholar
  20. Umar A (2009) Synthesis of donut-like SnO2 structures composed of small nanocrystals on silicon substrate: growth mechanism, structural and optical properties. J Alloys Compd 485:759–763CrossRefGoogle Scholar
  21. Van Hieu N (2009) Highly reproducible synthesis of very large-scale tin oxide nanowires used for screen-printed gas sensor. Sens Actuators B Chem 144(2):425–431CrossRefGoogle Scholar
  22. Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125(52):16176–16177CrossRefGoogle Scholar
  23. Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903CrossRefGoogle Scholar
  24. Wang D, Chu X, Gong M (2006a) Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method. Sens Actuators B 117:183–187CrossRefGoogle Scholar
  25. Wang HC, Li Y, Yang MJ (2006b) Fast response thin film SnO2 gas sensors operating at room temperature. Sens Actuators B Chem 119(2,7):380–383CrossRefGoogle Scholar
  26. Wang GX, Park JS, Park MS, Gou XL (2008) Synthesis and high gas sensitivity of tin oxide nanotubes. Sensor Actuators B Chem 131(1):313–317CrossRefGoogle Scholar
  27. Zhu W, Wang W, Xu H, Shi J (2006) Fabrication of ordered SnO2 nanotube arrays via a template route. Mater Chem Phys 99:127–130CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. G. Leyva
    • 1
    • 3
    Email author
  • M. Granada
    • 2
    • 4
  • D. F. Rodriguez
    • 1
  • H. E. Troiani
    • 2
    • 4
  1. 1.G.I.yA.N.N., Centro Atómico Constituyentes, CNEAPcia. Buenos AiresArgentina
  2. 2.Centro Atómico Bariloche, CNEARío NegroArgentina
  3. 3.Escuela de Ciencia y Tecnología—UNSAMSan MartínArgentina
  4. 4.CONICET and Instituto BalseiroRío NegroArgentina

Personalised recommendations