Advertisement

Societal response to nanotechnology: converging technologies–converging societal response research?

  • Amber RonteltapEmail author
  • Arnout R. H. Fischer
  • Hilde Tobi
Perspectives

Abstract

Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate societal response. This paper systematically reviews the current state of convergence in societal response research by first sketching the predominant approaches to previous new technologies, followed by an analysis of current research into societal response to nanotechnology. A set of 107 papers on previous new technologies shows that rational actor models have played an important role in the study of societal response to technology, in particular in the field of information technology and the geographic region of Asia. Biotechnology and nuclear power have, in contrast, more often been investigated through risk perception and other affective determinants, particularly in Europe and the USA. A set of 42 papers on societal response to nanotechnology shows similarities to research in biotechnology, as it also builds on affective variables such as risk perception. Although there is a tendency to extend the rational models with affective variables, convergence in social science approaches to response to new technologies still has a long way to go. The challenge for researchers of societal response to technologies is to converge to some shared principles by taking up the best parts from the rational actor models dominant in information technology, whilst integrating non-rational constructs from biotechnology research. The introduction of nanotechnology gives a unique opportunity to do so.

Keywords

Nanotechnology Societal response Systematic review Converging methods Rational actor models Affective determinants Science and technology governance 

Notes

Acknowledgements

This research was financially supported by Cefic-LRI (Long-range Research Initiative).

References

  1. Ajzen I (1991) The theory of planned behavior. Organ Behav Hum Decis Process 50:179–211CrossRefGoogle Scholar
  2. Altmann J (2004) Military uses of nanotechnology: perspectives and concerns. Secur Dialogue 35(1):61–79. doi: 10.1177/0967010604042536 CrossRefGoogle Scholar
  3. Bainbridge WS (2002) Public attitudes toward nanotechnology. J Nanopart Res 4(6):561–570CrossRefGoogle Scholar
  4. Burri RV, Bellucci S (2008) Public perception of nanotechnology. J Nanopart Res 10(3):387–391. doi: 10.1007/s11051-007-9286-7 CrossRefGoogle Scholar
  5. Chaiken S, Trope Y (1999) Dual-process theories in social psychology. Guilford, New YorkGoogle Scholar
  6. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 133:319–339CrossRefGoogle Scholar
  7. Ford CA, English A, Davenport AF, Stinnett AJ (2009) Increasing adolescent vaccination: barriers and strategies in the context of policy, legal, and financial issues. J Adolesc Health 44(6):568–574. doi: 10.1016/j.jadohealth.2008.11.015 CrossRefGoogle Scholar
  8. Frewer LJ, Lassen J, Kettlitz B, Scholderer J, Beekman V, Berdal KG (2004) Societal aspects of genetically modified foods. Food Chem Toxicol 42(7):1181–1193CrossRefGoogle Scholar
  9. Ghazinoory S, Ghazinouri R (2009) Nanotechnology and sociopolitical modernity in developing countries: case study of Iran. Technol Econ Dev Econ 15(3):395–417. doi: 10.3846/1392-8619.2009.15.395-417 CrossRefGoogle Scholar
  10. Griffin RJ, Dunwoody S, Neuwirth K (1999) Proposed model of the relationship of risk information seeking and processing to the development of preventive behaviors. Environ Res A 80(2):S230–S245CrossRefGoogle Scholar
  11. Grinbaum A (2006) Cognitive barriers in perception of nanotechnology. J Law Med Ethics 34(4):689–694CrossRefGoogle Scholar
  12. Gupta N, Fischer ARH, Frewer LJ (2011) Socio-psychological determinants of public acceptance of technologies: a review. Public Underst Sci. doi: 10.1177/0963662510392485
  13. Huffman WE, Rousu M, Shogren JF, Tegene A (2004) Consumer’s resistance to genetically modified foods: the role of information in an uncertain environment. J Agric Food Ind Organ 2(2):1–13Google Scholar
  14. Jacobs A (2004) Sociological practitioners contributing to new product development: mapping the challenges. Sociol Res Online 9(4):28CrossRefGoogle Scholar
  15. Kahneman D (2003) A perspective on judgment and choice: mapping bounded rationality. Am Psychol 58(9):697–720CrossRefGoogle Scholar
  16. Kasperson RE, Renn O, Slovic P, Brown S, Emel J, Goble R, Ratick S (1988) The social amplification of risk: a conceptual framework. Risk Anal 8(2):177–187CrossRefGoogle Scholar
  17. Katz E, Rice RE (2009) Public views of mobile medical devices and services: a US national survey of consumer sentiments towards RFID healthcare technology. Int J Med Inform 78(2):104–114. doi: 10.1016/j.ijmedinf.2008.06.001 CrossRefGoogle Scholar
  18. Katz E, Solomon F, Mee W, Lovel R (2009) Evolving scientific research governance in Australia: a case study of engaging interested publics in nanotechnology research. Public Underst Sci 18(5):531–545. doi: 10.1177/0963662507082016 CrossRefGoogle Scholar
  19. Konana P, Balasubramanian S (2005) The social-economic-psychological model of technology adoption and usage: an application to online investing. Decis Support Syst 39(3):505–524. doi: 10.1016/j.dss.2003.12.003 CrossRefGoogle Scholar
  20. Kuzma J (2010) Nanotechnology in animal production: upstream assessment of applications. Livest Sci 130(1–3):14–24. doi: 10.1016/j.livsci.2010.02.006 CrossRefGoogle Scholar
  21. Kuzma J, Paradise J, Ramachandran G, Kim JA, Kokotovich A, Wolf SM (2008a) An integrated approach to oversight assessment for emerging technologies. Risk Anal 28(5):1197–1219. doi: 10.1111/j.1539-6924.2008.01086.x CrossRefGoogle Scholar
  22. Kuzma J, Romanchek J, Kokotovich A (2008b) Upstream oversight assessment for agrifood nanotechnology: a case studies approach. Risk Anal 28(4):1081–1098. doi: 10.1111/j.1539-6924.2008.01071 Google Scholar
  23. Lee CJ, Scheufele DA, Lewenstein BV (2005) Public attitudes toward emerging technologies: examining the interactive effects of cognitions and affect on public attitudes toward nanotechnology. Sci Commun 27(2):240–267. doi: 10.1177/1075547005281474 CrossRefGoogle Scholar
  24. MacOubrie J (2006) Nanotechnology: public concerns, reasoning and trust in government. Public Underst Sci 15(2):221–241CrossRefGoogle Scholar
  25. Nakagawa Y, Shiroyama H, Kuroda K, Suzuki T (2010) Assessment of social implications of nanotechnologies in Japan: application of problem structuring method based on interview surveys and cognitive maps. Technol Forecast Soc Change 77(4):615–638. doi: 10.1016/j.techfore.2009.11.002 CrossRefGoogle Scholar
  26. O’Hara K, Morris R, Shadbolt N, Hitch GJ, Hall W, Beagrie N (2006) Memories for life: a review of the science and technology. J R Soc Interface 3(8):351–365. doi: 10.1098/rsif.2006.0125 CrossRefGoogle Scholar
  27. Pidgeon N, Rogers-Hayden T (2007) Opening up nanotechnology dialogue with the publics: risk communication or ‘upstream engagement’? Health Risk Soc 9(2):191–210. doi: 10.1080/13698570701306906 CrossRefGoogle Scholar
  28. Rice RE, Katz JE (2008) Assessing new cell phone text and video services. Telecomm Policy 32(7):455–467. doi: 10.1016/j.telpol.2008.05.005 CrossRefGoogle Scholar
  29. Rimal AP, Moon W, Balasubramanian S (2005) Agro-biotechnology and organic food purchase in the United Kingdom. Br Food J 107(2):84–97. doi: 10.1108/00070700510579162 CrossRefGoogle Scholar
  30. Roco MC, Bainbridge WS (2002) Converging technologies for improving human performance: nanotechnology Biotechnology Information Technology and Cognitive Science. National Science Foundation, Arlington, VAGoogle Scholar
  31. Roco MC, Bainbridge WS (2005) Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res 7(1):1–13. doi: 10.1007/s11051-004-2336-5 CrossRefGoogle Scholar
  32. Rogers EM (1995) Diffusion of innovations, 4th edn. Free Press, New YorkGoogle Scholar
  33. Ronteltap A, van Trijp JCM, Renes RJ, Frewer LJ (2007) Consumer acceptance of technology-based food innovations: lessons for the future of nutrigenomics. Appetite 49(1):1–17. doi: 10.1016/j.appet.2007.02.002 CrossRefGoogle Scholar
  34. Schenk MF, Fischer ARH, Frewer LJ, Gilissen LJWJ, Jacobsen E, Smulders MJM (2008) The influence of perceived benefits on acceptance of GM applications for allergy prevention. Health Risk Soc 10(3):263–282CrossRefGoogle Scholar
  35. Schulte PA, Salamanca-Buentello F (2007) Ethical and scientific issues of nanotechnology in the workplace. Environ Health Perspect 115(1):5–12. doi: 10.1289/ehp.9456 CrossRefGoogle Scholar
  36. Schutz H, Wiedemann PM (2008) Framing effects on risk perception of nanotechnology. Public Underst Sci 17(3):369–379CrossRefGoogle Scholar
  37. Siegrist M (2010) Predicting the future: review of public perception studies of nanotechnology. Hum Ecol Risk Assess 16(4):837–846. doi: 10.1080/10807039.2010.501255 CrossRefGoogle Scholar
  38. Siegrist M, Earle TC, Gutscher H (2003) Test of a trust and confidence model in the applied context of electromagnetic field (EMF) risks. Risk Anal 23(4):705–716CrossRefGoogle Scholar
  39. Siegrist M, Cousin ME, Kastenholz H, Wiek A (2007) Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust. Appetite 49(2):459–466. doi: 10.1016/j.appet.2007.03.002 CrossRefGoogle Scholar
  40. Slovic P (1987) Perception of risk. Science 236(4799):280–285CrossRefGoogle Scholar
  41. Stebbing M (2009) Avoiding the trust deficit: public engagement, values, the precautionary principle and the future of nanotechnology. J Bioethic Inq 6(1):37–48. doi: 10.1007/s11673-009-9142-9 CrossRefGoogle Scholar
  42. The Royal Society and The Royal Academy of Engineering (2004) Nanosciences and nanotechnologies: opportunities and uncertainties. Imperial College Press, London, p 111Google Scholar
  43. Trumbo CW (1999) Heuristic-systematic information processing and risk judgment. Risk Anal 19(3):391–400Google Scholar
  44. Trumbo CW (2002) Information processing and risk perception: an adaptation of the heuristic-systematic model. J Commun 52(2):367–381CrossRefGoogle Scholar
  45. Wiek A, Gasser L, Siegrist M (2009) Systemic scenarios of nanotechnology: sustainable governance of emerging technologies. Futures 41(5):284–300. doi: 10.1016/j.futures.2008.11.016 CrossRefGoogle Scholar
  46. Wynne B (1991) Knowledges in context. Sci Technol Hum Val 16(1):111–121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Amber Ronteltap
    • 1
    Email author
  • Arnout R. H. Fischer
    • 2
  • Hilde Tobi
    • 3
  1. 1.LEI, Part of Wageningen University and Research CentreWageningenThe Netherlands
  2. 2.Wageningen University and Research Centre, Marketing and Consumer Behaviour GroupWageningenThe Netherlands
  3. 3.Wageningen University and Research Centre, Research Methodology GroupWageningenThe Netherlands

Personalised recommendations