Journal of Nanoparticle Research

, 13:3599 | Cite as

In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

  • Shiv Prakash Singh
  • Basudeb KarmakarEmail author
Brief communication


In this study, in situ control growth of bismuth nanoparticles (Bi0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.


Bismuth nanoparticles Transmission electron microscopy Glass Nano patterning 



SPS express his sincere gratitude for the financial support of the Council of Scientific and Industrial Research (CSIR), New Delhi in the form of CSIR-SRF under sanction number 31/15(78)/2010-EMR-I. The authors thank Director of the institute for his kind permission to publish this article. They also thankfully acknowledge the Electron Microscope Division of this institute for recording the TEM, HRTEM, and SAED images.


  1. Balan L, Schneider R, Billaud D, Fort Y, Ghanbaja J (2004) A new synthesis of ultrafine nanometre-sized bismuth particles. Nanotechnology 15:940–944CrossRefGoogle Scholar
  2. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photonics 1:484–588CrossRefGoogle Scholar
  3. Brundle CR, Evans CA Jr, Wihon S (1992) Encyclopedia of materials characterization. Butterworth-Heinemann, BostonGoogle Scholar
  4. Carotenuto G, Hison CL, Capezzuto F, Palomba M, Perlo P, Conte P (2009) Synthesis and thermoelectric characterisation of bismuth Nanoparticles. J Nanopart Res 11:1729–1738CrossRefGoogle Scholar
  5. Chen Y, Jaakola J, Ge Y, Säynätjoki A, Tervonen A, Hannula SP, Honkanen S (2009) In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process. J Non-Cryst Solids 355:2224–2227CrossRefGoogle Scholar
  6. Derrouiche S, Loebick CZ, Pfefferle L (2010) Optimization of routes for the synthesis of bismuth nanotubes: implications for nanostructure form and selectivity. J Phys Chem C 114:3431–3440CrossRefGoogle Scholar
  7. Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore RC, Frampton K, Koizumi F, Richardson DJ, Monro TM (2004) Bismuth glass holey fibers with high nonlinearity. Opt Express 12:5082–5087CrossRefGoogle Scholar
  8. Gao Y, Niu H, Zeng C, Chen Q (2003) Preparation and characterization of single-crystalline bismuth nanowires by a low-temperature solvothermal process. Chem Phys Lett 367:141–144CrossRefGoogle Scholar
  9. Gekhtman D, Zhang ZB, Adderton D, Dresselhaus MS, Dresselhaus G (1999) Electrostatic force spectroscopy and imaging of Bi wires: spatially resolved quantum confinement. Phys Rev Lett 82:3887–3890CrossRefGoogle Scholar
  10. Grass RN, Stark WJ (2006) Flame spray synthesis under a non-oxidizing atmosphere: preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal. J Nanopart Res 8:729–736CrossRefGoogle Scholar
  11. Grzelczak M, Pe’rez-Juste J, Mulvaney P, Liz-Marza’n LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  12. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104:11708–11718CrossRefGoogle Scholar
  13. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786CrossRefGoogle Scholar
  14. Kim J-U, Cha S-H, Shin K, Jho JY, Lee J-C (2005) Synthesis of gold nanoparticles from gold(I)-alkanethiolate complexes with supramolecular structures through electron beam irradiation in TEM. J Am Chem Soc 127:9962–9963CrossRefGoogle Scholar
  15. Kim SH, Choi Y-S, Kang K, Yang SI (2007) Controlled growth of bismuth nanoparticles by shiv beam irradiation in TEM. J Alloy Compd 427:330–332CrossRefGoogle Scholar
  16. Latham AH, Williams ME (2008) Transmission electron microscope-induced structural evolution in amorphous Fe, Co, and Ni oxide nanoparticles. Langmuir 24:14195–14202CrossRefGoogle Scholar
  17. Mamidala V, Xing G, Ji W (2010) Surface plasmon enhanced third-order nonlinear optical effects in Ag–Fe3O4. J Phys Chem C 114:22466–22471CrossRefGoogle Scholar
  18. Meldrum A, Boatner LA, White CW, Ewing RC (2000) Ion irradiation effects in nonmetals: formation of nanocrystals and novel microstructures. Mat Res Innovat 3:190–204CrossRefGoogle Scholar
  19. Mellor JW (1947) Comprehensive treatise on inorganic and theoretical chemistry. Vol. IX. Longmans, LondonGoogle Scholar
  20. Oshima Y, Takayanagi K, Hirayama H (1997) Structural anomaly of fine bismuth particles observed by ultra high-vacuum TEM. Z Phys D 40:534–538CrossRefGoogle Scholar
  21. Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96:248–270CrossRefGoogle Scholar
  22. Peng M, Wondraczek L (2009) Bismuth-doped oxide glasses as potential solar spectral converters and concentrators. J Mater Chem 19:627–630CrossRefGoogle Scholar
  23. Ren J, Dong G, Xu S, Bao R, Qiu J (2008) Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped Glass. J Phys Chem A 112:3036–3039CrossRefGoogle Scholar
  24. Reyes-Esqueda JA, Rodríguez-Iglesias V, Silva-Pereyra HG, Torres–Torres C, Santiago-Ramírez AL, Cheang-Wong JC, Crespo-Sosa A, Rodríguez-Fernández L, López-Suárez A, Oliver A (2009) Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites. Opt Express 17:12849–12868CrossRefGoogle Scholar
  25. Sanz O, Haro-Poniatowski E, Gonzalo J, Navarro JMF (2006) Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J Non-Cryst Solids 352:761–768CrossRefGoogle Scholar
  26. Sepulveda-Guzman S, Elizondo-Villarreal N, Ferrer D, Torres-Castro A, Gao X, Zhou JP, Jose-Yacaman M (2007) In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18(1–6):335604CrossRefGoogle Scholar
  27. Smolorz S, Kang I, Wise F, Aitken BG, Borrelli NF (1999) Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses. J Non-Cryst Solids 256&257:310–317CrossRefGoogle Scholar
  28. Sugimoto N, Kanbara H, Fujiwara S, Tanaka K, Hirao K (1996) Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3. Opt Lett 21:1637–1639CrossRefGoogle Scholar
  29. Vanýsek P (1994) Electrochemical series. In: Lide DR (ed) CRC Hand book of chemistry and physics. CRC Press, LondonGoogle Scholar
  30. Wang YW, Hong BH, Kim KS (2005) Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra. J Phys Chem B 109:7067–7072CrossRefGoogle Scholar
  31. Wang F, Tang R, Yu H, Gibbons PC, Buhro WE (2008) Size- and shape-controlled synthesis of bismuth nanoparticles. Chem Mater 20:3656–3662CrossRefGoogle Scholar
  32. Wang D, Ma X, Wang Y, Wang L, Wang Z, Zheng W, He X, Li J, Peng Q, Li Y (2010) Shape control of CoO and LiCoO2 nanocrystals. Nano Res 3:1–7CrossRefGoogle Scholar
  33. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  34. Zhang ZB, Gekhman D, Dresselhaus MS, Ying JY (1999) Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem Mater 11:1659–1665CrossRefGoogle Scholar
  35. Zhang Y, Yang Y, Zheng J, Hua W, Chen G (2008) Effects of oxidizing additives on optical properties of Bi2O3–B2O3–SiO2 glasses. J Am Ceram Soc 91:3410–3412CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Glass Science and Technology Section, Glass DivisionCentral Glass and Ceramic Research Institute (CSIR, India)KolkataIndia

Personalised recommendations