Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6347–6364 | Cite as

Tuning of size and shape of Au–Pt nanocatalysts for direct methanol fuel cells

  • Simona E. Hunyadi MurphEmail author
  • Catherine J. Murphy
  • Hector R. Colon-Mercado
  • Ricardo D. Torres
  • Katie J. Heroux
  • Elise B. Fox
  • Lucas B. Thompson
  • Richard T. Haasch
Research Paper


In this article, we report the precise control of the size, shape, and surface morphology of Au–Pt nanocatalysts (cubes, blocks, octahedrons, and dogbones) synthesized via a seed-mediated approach. Gold “seeds” of different aspect ratios (1–4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au–Pt nanocatalysts at a low temperature (40 °C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis, UV–Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was employed to evaluate the Au–Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction of direct methanol fuel cells. The results indicate the Au–Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au–Pt dogbones and Pt-black; however, its performance is affected by the presence of MeOH.


Gold-platinum nanocatalysts Direct methanol fuel cells Anisotropic nanostructures Energy conversion 



Cetyltrimethylammonium bromide


Methanol oxidation reaction


Oxygen reduction reaction



The authors gratefully acknowledge the financial support for this study by the Savannah River National Laboratory LDRD-DOE. The authors would like to thank Dr. Kimberly Roberts, Prof. Apparao Rao, Dr. Robert Lascola, Dr. Charles Chuck, and the staff of electron microscopy facility at Clemson for making their instrumentation available to us.

Supplementary material

11051_2011_449_MOESM1_ESM.doc (1 mb)
Supplementary material 1 (DOC 1027 kb)


  1. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloy Compd 461:253–262CrossRefGoogle Scholar
  2. Bauer E, van der Merwe J (1986) Structure and growth of crystalline superlattices—from monolayer to superlattice. Phys Rev B 33:3657–3671CrossRefGoogle Scholar
  3. Bell A (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691CrossRefGoogle Scholar
  4. Burda C, Chen X, Narayanan R, El-Sayed M (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  5. Carbo-Argibay E, Rodriguez-Gonzalez B, Gomez-Grana S et al (2010) The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets. Angew Chem Int Ed 49:9397–9400CrossRefGoogle Scholar
  6. Chen C, Akashi M (1997) Synthesis, characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly(N-isopropylacrylamide). Langmuir 13:6465–6472CrossRefGoogle Scholar
  7. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties and applications. Chem Rev 110:3767–3804CrossRefGoogle Scholar
  8. Darling R, Meyers J (2005) Mathematical model of platinum movement in PEM fuel cells. J Electrochem Soc 152:A242–A247CrossRefGoogle Scholar
  9. Eaglesham DJ, Cerullo M (1990) Dislocation-free Stranski–Krastanow growth of Ge on Si (100). Phys Rev Lett 64:1943–1950CrossRefGoogle Scholar
  10. Falicov L, Somorjai G (1985) Correlation between catalytic activity and bonding and coordination-number of atoms and molecules on transition-metal surfaces-theory and experimental evidence. Proc Natl Acad Sci USA 82:2207–2211CrossRefGoogle Scholar
  11. Fan F, Liu D, Wu Y et al (2008) Epitaxial growth of heterogeneous metal nanocrystal: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951CrossRefGoogle Scholar
  12. Gou L, Murphy C (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672CrossRefGoogle Scholar
  13. Grzelczak M, Perez-Juste J, de Abajo F, Liz-Marzan L (2007) Optical properties of platinum-coated gold nanorods. J Phys Chem C 111:6183–6188CrossRefGoogle Scholar
  14. Guo S, Wang L, Wang Y, Fang Y, Wang E (2007) Bifunctional Au@Pt hybrid nanorods. J Colloid Interf Sci 315:363–368CrossRefGoogle Scholar
  15. Guo S, Wang L, Dong S, Wang E (2008) A novel urchinlike gold/platinum hybrid nanocatalyst with controlled size. J Phys Chem C 112:13510–13515CrossRefGoogle Scholar
  16. Ha TH, Koo H-J, Chung BH (2007) Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J Phys Chem C 111:1123–1130CrossRefGoogle Scholar
  17. He W, Wu X, Xie S et al (2010) Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties. Langmuir 26:4443–4448CrossRefGoogle Scholar
  18. Hunyadi S, Murphy C (2006) Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem 16:3929–3935CrossRefGoogle Scholar
  19. Hunyadi S, Murphy C (2009) Synthesis and characterization of silver-platinum bimetallic nanowires and platinum nanotubes. J Clust Sci 20:319–330CrossRefGoogle Scholar
  20. Hunyadi Murph SE, Torres RD (2010) Shape selective nano-catalysts: toward direct methanol fuel cells applications. NSTI-Nanotech 3:777–778Google Scholar
  21. Hunyadi Murph S, Serkiz S, Fox E et al (2011) Synthesis, functionalization, characterization and application of controlled shape nanoparticles in energy production. Book Chapter ACS Symposium Series, vol 1064, Chapter 8, pp 127–163Google Scholar
  22. Irissou E, Laplante S, Garbarino M et al (2010) Effect of size on the electrochemical stability of Pt nanoparticles deposited on gold substrate. J Phys Chem C 114:2192–2199CrossRefGoogle Scholar
  23. Katz-Boon H, Rossouw CJ, Weyland M, Funston AM, Mulvaney P, Etheridge J (2011) Three-dimensional morphology and crystallography of gold nanorods. Nano Lett 11(1):273–278CrossRefGoogle Scholar
  24. Kongkanand A, Kuwabata S (2005) Oxygen reduction at platinum monolayer islands deposited on Au(111). J Phys Chem B 109:23190–23195CrossRefGoogle Scholar
  25. Lai S, Lebedeva N, Housmans T et al (2007) Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top Catal 46:320–333CrossRefGoogle Scholar
  26. Liang H, Zhang H, Hu J et al (2004) Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts Angew. Chem Int Ed 43:1540–1543CrossRefGoogle Scholar
  27. Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109:22192–22200CrossRefGoogle Scholar
  28. Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) In situ growth of catalytic active Au–Pt bimetallic nanorods in thermoresponsive core-shell microgels. ACS Nano 4:7078–7086CrossRefGoogle Scholar
  29. Magnussen O (2002) Ordered anion adlayers on metal electrode surfaces. Chem Rev 102:679–725CrossRefGoogle Scholar
  30. McNicol BD, Rand DAJ, Williams KR (1999) Direct methanol-air fuel cells for road transportation. J Power Sources 83:15–31CrossRefGoogle Scholar
  31. Möller H, Pistorius P (2004) The electrochemistry of gold-platinum alloys. J Electroanal Chem 570:243–255CrossRefGoogle Scholar
  32. Murphy C, Sau T, Hunyadi S et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRefGoogle Scholar
  33. Murphy C, Gole A, Hunyadi S et al (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554CrossRefGoogle Scholar
  34. Narayanan R, El-Sayed M (2003) Effect of catalytic activity on the metallic nanoparticle size distribution: electron-transfer reaction between Fe(CN)6 and thiosulfate ions catalyzed by PVP-platinum nanoparticles. J Phys Chem B 107:12416–12424CrossRefGoogle Scholar
  35. Narayanan R, El-Sayed M (2005a) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676CrossRefGoogle Scholar
  36. Narayanan R, El-Sayed M (2005b) Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the Suzuki reaction. Langmuir 21:2027–2033CrossRefGoogle Scholar
  37. Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18:2415–2419CrossRefGoogle Scholar
  38. Orendorff C, Murphy C (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994CrossRefGoogle Scholar
  39. Ortiz-Soto L, Alexeev O, Amiridis M (2006) Low temperature oxidation of CO over cluster-derived platinum-gold catalysts. Langmuir 22:3112–3117CrossRefGoogle Scholar
  40. Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA (2008) Tuning of catalytic CO oxidation by changing composition of Rh–Pt bimetallic nanoparticles. Nano Lett 8:673–677CrossRefGoogle Scholar
  41. Paulus U, Endruschat U, Feldmeyer G et al (2000) New PtRu alloy colloids as precursors for fuel cell catalysts. J Catal 195:383–393CrossRefGoogle Scholar
  42. Paulus U, Schmidt T, Gasteiger H et al (2001) The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J Electroanal Chem 495:134–145CrossRefGoogle Scholar
  43. Rao A, Schoenenberger M et al (2007) Characterization of nanoparticles using Atomic Force Microscopy. J Phys Conf Ser 61:971–976CrossRefGoogle Scholar
  44. Ren H, Humbert MP, Menning CA, Chen JG, Shu Y, Singh UG, Cheng WC (2010) Inhibition of coking and CO poisoning of Pt catalysts by the formation of Au/Pt bimetallic surfaces. Appl Catal A Gen 375:303–309CrossRefGoogle Scholar
  45. Rojas M, Sanchez C, Del Popolo M (2000) An embedded atom approach to underpotential deposition phenomena. Surf Sci 453:225–228CrossRefGoogle Scholar
  46. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778CrossRefGoogle Scholar
  47. Sajanlal P, Pradeep T (2010) Bimetallic mesoflowers: region-specific overgrowth and substrate dependent surface-enhanced Raman scattering at single particle level. Langmuir 26:8901–8907CrossRefGoogle Scholar
  48. Sarapuu A, Kallip A, Kasikov L et al (2008) Electroreduction of oxygen on gold-supported thin Pt films in acid solutions. J Electroanal Chem 624:144–150CrossRefGoogle Scholar
  49. Sau T, Murphy C (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6416–6420CrossRefGoogle Scholar
  50. Somorjai GA, Blakely DW (1975) Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 258:580CrossRefGoogle Scholar
  51. Somorjai G, Rioux R, Grunes J (2005) Fabrication of two-dimensional and three-dimensional platinum nanoclusters to serve as high technology catalysts—catalysts capable of 100% reaction selectivity. In: Jena P, Khanna SN, Rao BK (eds) Clusters and nano-assemblies physical and biological systems. World Scientific, Singapore, pp 97–127CrossRefGoogle Scholar
  52. Thomas D, Wightman P (1986) Valence electronic structure of AuZ and AuMg alloys derived from a new way of analyzing Auger-parameter shifts. Phys Rev B 33:5406–5413CrossRefGoogle Scholar
  53. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRefGoogle Scholar
  54. Toda T, Igarashi H, Uchida H et al (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756Google Scholar
  55. Turner N, Single A (1990) Determination of peak positions and areas from wide scan XPS spectra. Surf Interf Anal 15:215–222CrossRefGoogle Scholar
  56. Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6:1080CrossRefGoogle Scholar
  57. Wang Z, Mohamed M, El-Sayed M (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440:L809–L814CrossRefGoogle Scholar
  58. Wang ZL, Gao RP, Nikoobakht B, El-Sayed MA (2000) Surface reconstruction of the unstable 100 surface in gold nanorods. J Phys Chem B 104:5417–5420CrossRefGoogle Scholar
  59. Wang S, Kristian N, Jiang S, Wang X (2008) Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochem Commun 10:961–964CrossRefGoogle Scholar
  60. Williams KR, Burstein GT (1997) Low temperature fuel cells: Interactions between catalysts and engineering design. Catal Today 38:401–410CrossRefGoogle Scholar
  61. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  62. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664CrossRefGoogle Scholar
  63. Zecchina A, Groppo E, Bordiga S (2007) Selective catalysis and nanoscience: an inseparable pair. Chem Eur J 13:2440–2460CrossRefGoogle Scholar
  64. Zeng J, Yang J, Lee JY, Zhou W (2006) Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J Phys Chem B 110:24606–24611CrossRefGoogle Scholar
  65. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222CrossRefGoogle Scholar
  66. Zhang D, Diao P, Zhang Q (2009) Potential-induced shape evolution of gold nanoparticles prepared on ITO substrate. J Phys Chem C 113:36–39Google Scholar
  67. Zhong C, Luo J, Fang B et al (2010) Nanostructured catalysts in fuel cells. Nanotechnology 21:062001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • Simona E. Hunyadi Murph
    • 1
    Email author
  • Catherine J. Murphy
    • 2
  • Hector R. Colon-Mercado
    • 1
  • Ricardo D. Torres
    • 1
  • Katie J. Heroux
    • 1
  • Elise B. Fox
    • 1
  • Lucas B. Thompson
    • 2
  • Richard T. Haasch
    • 3
  1. 1.Savannah River National LaboratoryAikenUSA
  2. 2.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations