Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment

  • G. Roebben
  • S. Ramirez-Garcia
  • V. A. Hackley
  • M. Roesslein
  • F. Klaessig
  • V. Kestens
  • I. Lynch
  • C. M. Garner
  • A. Rawle
  • A. Elder
  • V. L. Colvin
  • W. Kreyling
  • H. F. Krug
  • Z. A. Lewicka
  • S. McNeil
  • A. Nel
  • A. Patri
  • P. Wick
  • M. Wiesner
  • T. Xia
  • G. Oberdörster
  • K. A. Dawson
Perspectives

Abstract

The International Alliance for NanoEHS Harmonization (IANH) organises interlaboratory comparisons of methods used to study the potential biological impacts of nanomaterials. The aim of IANH is to identify and reduce or remove sources of variability and irreproducibility in existing protocols. Here, we present results of the first IANH round robin studies into methods to assess the size and surface charge of suspended nanoparticles. The test materials used (suspensions of gold, silica, polystyrene, and ceria nanoparticles, with [primary] particles sizes between 10 nm and 80 nm) were first analysed in repeatability conditions to assess the possible contribution of between-sample heterogeneity to the between-laboratory variability. Reproducibility of the selected methods was investigated in an interlaboratory comparison between ten different laboratories in the USA and Europe. Robust statistical analysis was used to evaluate within- and between-laboratory variability. It is shown that, if detailed shipping, measurement, and reporting protocols are followed, measurement of the hydrodynamic particle diameter of nanoparticles in predispersed monomodal suspensions using the dynamic light scattering method is reproducible. On the other hand, measurements of more polydisperse suspensions of nanoparticle aggregates or agglomerates were not reproducible between laboratories. Ultrasonication, which is commonly used to prepare dispersions before cell exposures, was observed to further increase variability. The variability of the zeta potential values, which were also measured, indicates the need to define better surface charge test protocols and to identify sources of variability.

Keywords

Nanoparticle Particle surface charge Interlaboratory comparison Reproducibility Polydispersity Toxicology Health and safety implications 

References

  1. ASTM (2009) ASTM E2490–09, standard guide for measurement of particle size distribution of nanomaterials in suspension by photon correlation spectroscopy (PCS). ASTM International, West Conshohocken, PAGoogle Scholar
  2. Bihari P, Vippola M, Schultes S, Praetner M, Khandogal AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14CrossRefGoogle Scholar
  3. Cummins HZ, Pike ER (1974) Photon correlation and light beating spectroscopy, NATO Advanced Study Institutes Series. Series B, Physics, V.3. In: Proceedings of the NATO workshop, Capri, Italy, July 16–27, 1973, ISBN: 0306357038/0-306-35703-8. Plenum Press, New YorkGoogle Scholar
  4. Hackley VA, Clogston JD (2007) Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. NIST-NCL Joint Assay Protocol PCC-1, National Cancer Institute, Nanotechnology Characterization Laboratory. http://ncl.cancer.gov/working_assay-cascade.asp. Accessed 27 May 2011
  5. Hackley VA, Premachandran RS, Malghan SG, Schiller SB (1995) A standard reference material for the measurement of particle mobility by electrophoretic light scattering. Colloid Surface A 98:209–224CrossRefGoogle Scholar
  6. Hassan PA, Kulshreshtha SK (2006) Modification to the cumulant analysis of polydispersity in quasielastic light scattering data. J Colloid Interface Sci 300:744–748CrossRefGoogle Scholar
  7. Hsu JP, Nacu A (2004) An experimental study on the rheological properties of aqueous ceria dispersions. J Colloid Interface Sci 274:277–284CrossRefGoogle Scholar
  8. IRMM (2009) IRMM-304 material information sheet, version June 2009, Institute for Reference Materials and Measurements. http://irmm.jrc.ec.europa.eu/html/reference_materials_catalogue/index.htm. Accessed 13 Oct 2009
  9. ISO (1994) ISO 5725–2:1994, accuracy (trueness and precision) of measurement methods and results–Part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  10. ISO (1996) ISO 13321:1996, particle size analysis–photon correlation spectroscopy. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  11. ISO (1998) ISO 5725–5:1998, accuracy (trueness and precision) of measurement methods and results–Part 5: alternative methods for the determination of the precision of a standard measurement method. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  12. ISO (2008a) ISO guide 30:1992/Amd 1:2008, revision of definitions for reference material and certified reference material. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  13. ISO (2008b) ISO 22412:2008, particle size analysis–dynamic light scattering. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  14. ISO (2009) CEN ISO/TS 27687:2009, nanotechnologies–terminology and definitions for nano-objects–nanoparticle, nanofibre and nanoplate. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  15. Linsinger TPJ, Roebben G, Solans C, Ramsch R (2010) Reference materials for measuring the size of nanoparticles. Trends Anal Chem 30:18–27CrossRefGoogle Scholar
  16. NIST (2008) NIST RM8012 report of investigation. https://www-s.nist.gov/srmors/view_detail.cfm?srm=8012. Accessed 26 Dec 2010
  17. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25CrossRefGoogle Scholar
  18. Rivera Gil P, Oberdörster G, Elder A, Puntes V, Parak WJ (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–5531CrossRefGoogle Scholar
  19. Taurozzi JS, Hackley VA, Wiesner MR (2010) Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment: issues and recommendations. Nanotoxicology. doi:10.3109/17435390.2010.528846
  20. Vincent A, Inerbaev TM, Babu S, Karakoti AS, Self WT, Masunov AE, Seal S (2010) Tuning hydrated nanoceria surfaces: experimental/theoretical investigations of ion exchange and implications in organic and inorganic interactions. Langmuir 26:7188–7198CrossRefGoogle Scholar
  21. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. Roebben
    • 1
  • S. Ramirez-Garcia
    • 2
  • V. A. Hackley
    • 3
  • M. Roesslein
    • 4
  • F. Klaessig
    • 5
  • V. Kestens
    • 1
  • I. Lynch
    • 2
  • C. M. Garner
    • 6
  • A. Rawle
    • 7
  • A. Elder
    • 8
  • V. L. Colvin
    • 9
  • W. Kreyling
    • 10
  • H. F. Krug
    • 4
  • Z. A. Lewicka
    • 9
  • S. McNeil
    • 11
  • A. Nel
    • 12
  • A. Patri
    • 11
  • P. Wick
    • 4
  • M. Wiesner
    • 13
  • T. Xia
    • 12
  • G. Oberdörster
    • 8
  • K. A. Dawson
    • 2
  1. 1.Institute for Reference Materials and MeasurementsJoint Research Centre of the European CommissionGeelBelgium
  2. 2.Centre for BioNano InteractionsUniversity College DublinBelfieldIreland
  3. 3.Material Measurement LaboratoryNational Institute of Standards & TechnologyGaithersburgUSA
  4. 4.EMPAGallenSwitzerland
  5. 5.Pennsylvania Bio Nano Systems LLCDoylestownUSA
  6. 6.Garner Nanotechnology SolutionsPleasantonUSA
  7. 7.Malvern Instruments IncWestboroughUSA
  8. 8.Department of Environmental MedicineUniversity of RochesterRochesterUSA
  9. 9.Department of ChemistryRice UniversityHoustonUSA
  10. 10.Helmholtz Zentrum MuenchenInstitute of Lung Biology and DiseaseNeuherberg/MunichGermany
  11. 11.Nanotechnology Characterization Laboratory, Advanced Technology ProgramSAIC-Frederick, IncFrederickUSA
  12. 12.Division of Nano MedicineDepartment of Medicine at UCLALos AngelesUSA
  13. 13.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations