Ultrafast laser melting of Au nanoparticles: atomistic simulations

Research Paper

Abstract

In spite of the technological importance of laser modification and processing of nanoparticles, the interaction of laser energy with nanoparticles is not well understood. In this work, integrated molecular dynamics (MD) and two-temperature (TTM) computational models have been developed to study ultrafast laser interaction with free Au nanoparticles with sizes 2.44–6.14 nm. At low intensity, when surface premelting and solid–liquid phase transition dominate, a nonhomogeneous surface premelting mechanism was identified. The appearance of a contiguous surface liquid layer (complete surface premelting) is size dependent and is not related to surface premelting history. The effects of temporary superheating and stable supercooling of nanoparticles were found and examined.

Keywords

Molecular dynamics Ultrafast laser Surface premelting Au nanoparticles Two-temperature model Percolation Nanoscale modeling and simulation 

References

  1. Akima H (1996) Algorithm 761: scattered-data surface fitting that has the accuracy of a cubic polynomial. ACM Trans Math Softw 22:362–371. doi:10.1145/232826.232856 CrossRefGoogle Scholar
  2. Anisimov SI, Kapeliovich BL, Perelman TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Soviet Phys JETP 39:375–377Google Scholar
  3. Atanasov PA, Takada H, Nedyalkov NN, Obara M (2007) Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton. Appl Surf Sci 253:8304–8308. doi:10.1016/j.apsusc.2007.02.108 CrossRefGoogle Scholar
  4. Bajaj G, Soni RK (2010) Synthesis of composite gold/tin-oxide nanoparticles by nano-soldering. J Nanopart Res 12:2597–2603. doi:10.1007/s11051-009-9836-2 CrossRefGoogle Scholar
  5. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423. doi:10.1103/RevModPhys.77.371 CrossRefGoogle Scholar
  6. Buffat PH, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298. doi:10.1103/PhysRevA.13.2287 CrossRefGoogle Scholar
  7. Carnevali P, Ercolessi F, Tosatti E (1987) Melting and nonmelting behavior of the Au (111) surface. Phys Rev B 12:6701–6704. doi:10.1103/PhysRevB.36.6701 CrossRefGoogle Scholar
  8. Castro T, Reifenberger R, Choi E, Andres RP (1990) Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B 42:8548–8556. doi:10.1103/PhysRevB.42.8548 CrossRefGoogle Scholar
  9. Chen J, He L, Farson DF, Rokhlin SI (2011) Comparison of simulation and experimental results of femtosecond laser-stimulated electrical discharges in small gaps and anode surface melting. J Phys D 44:115202. doi:10.1088/0022-3727/44/11/115202 CrossRefGoogle Scholar
  10. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New YorkGoogle Scholar
  11. Essam JW (1980) Percolation theory. Rep Prog Phys 43:833–912. doi:10.1088/0034-4885/43/7/001 CrossRefGoogle Scholar
  12. Hartland GV (2006) Coherent excitation of vibrational modes in metallic nanoparticles. Annu Rev Phys Chem 57:403–430. doi:10.1146/annurev.physchem.57.032905.104533 CrossRefGoogle Scholar
  13. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554. doi:10.1073/pnas.2232479100 CrossRefGoogle Scholar
  14. Hohlfeld J, Wellershoff SS, Güdde J, Conrad U, Jähnke V, Matthias E (2000) Electron and lattice dynamics following optical excitation of metals. Chem Phys 251:237–258. doi:10.1016/S0301-0104(99)00330-4 CrossRefGoogle Scholar
  15. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. doi:10.1103/PhysRevA.31.1695 CrossRefGoogle Scholar
  16. Hu M, Hartland GV (2002) Heat dissipation for Au particles in aqueous solution: relaxation time versus size. J Phys Chem B 106:7029–7033. doi:10.1021/jp020581+ CrossRefGoogle Scholar
  17. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi:10.1021/ja057254a CrossRefGoogle Scholar
  18. Hubenthal F, Alschinger M, Bauer M, Sánchez DB, Borg N, Brezeanu M, Frese R, Hendrich C, Krohn B, Aeschlimann M, Träger F (2005) Irradiation of supported gold and silver nanoparticles with continuous-wave, nanosecond, and femtosecond laser light: a comparative study. Proc SPIE 5838:224–235. doi:10.1117/12.608560 CrossRefGoogle Scholar
  19. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  20. Ikeda H, Qi Y, Cagin T, Samwer K, Johnson WL, Goddard WA (1999) Strain rate induced amorphization in metallic nanowires. Phys Rev Lett 82:2900–2903. doi:10.1103/PhysRevLett.82.2900 CrossRefGoogle Scholar
  21. Inasawa S, Sugiyama M, Yamaguchi Y (2005) Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. J Phys Chem B 109:3104–3111. doi:10.1021/jp045167j CrossRefGoogle Scholar
  22. Ivanov DS, Zhigilei LV (2003) Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys Rev B 68:064114. doi:10.1103/PhysRevB.68.064114 CrossRefGoogle Scholar
  23. Jiang L, Tsai HL (2005) Improved two-temperature model and its application in ultrashort laser heating of metal films. J Heat Transf Trans ASME 127:1167–1173. doi:10.1115/1.2035113 CrossRefGoogle Scholar
  24. José-Yacamán M, Gutierrez-Wing C, Miki M, Yang DQ, Piyakis KN, Sacher E (2005) Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B 109:9703. doi:10.1021/jp0509459 CrossRefGoogle Scholar
  25. Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters: photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128. doi:10.1021/jp980009b CrossRefGoogle Scholar
  26. Kim SJ, Ah CS, Jang DJ (2009) Laser-induced growth and reformation of gold and silver nanoparticles. J Nanopart Res 11:2023–2030. doi:10.1007/s11051-008-9565-y CrossRefGoogle Scholar
  27. Lin Z, Zhigilei LV, Celli V (2008) Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys Rev B 77:075133. doi:10.1103/PhysRevB.77.075133 CrossRefGoogle Scholar
  28. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426. doi:10.1021/jp9917648 CrossRefGoogle Scholar
  29. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759 CrossRefGoogle Scholar
  30. Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (1999) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103:1165–1170. doi:10.1021/jp983141k CrossRefGoogle Scholar
  31. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163. doi:10.1021/jp000679t CrossRefGoogle Scholar
  32. Lorazo P, Lewis LJ, Meunier M (2006) Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys Rev B 73:134108. doi:10.1103/PhysRevB.73.134108 CrossRefGoogle Scholar
  33. Lubashenko VV (2010) Size-dependent melting of nanocrystals: a self-consistent statistical approach. J Nanopart Res 12:1837–1844. doi:10.1007/s11051-009-9743-6 CrossRefGoogle Scholar
  34. Mafuné F, Kohno J, Takeda Y, Kondow T (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561. doi:10.1021/jp020786i CrossRefGoogle Scholar
  35. Melchionna S, Ciccotti G, Holian BL (1993) Hoover NPT dynamics for systems varying in shape and size. Mol Phys 78:533–544. doi:10.1080/00268979300100371 CrossRefGoogle Scholar
  36. Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208. doi:10.1103/PhysRevA.66.013208 CrossRefGoogle Scholar
  37. Nichols WT, Malyavanatham G, Henneke DE, O’Brien DT, Becker MF, Keto JW (2002) Bimodal nanoparticle size distributions produced by laser ablation of microparticles in aerosols. J Nanopart Res 4:423–432. doi:10.1023/A:1021644123428 CrossRefGoogle Scholar
  38. Nosé S (2002) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:191–198. doi:10.1080/00268970110089108 CrossRefGoogle Scholar
  39. Pan H, Ko SH, Grigoropoulos CP (2008) The coalescence of supported gold nanoparticles induced by nanosecond laser irradiation. Appl Phys A 90:247–253. doi:10.1007/s00339-007-4320-2 CrossRefGoogle Scholar
  40. Pan LS, Zhang YW, Lee HP (2010) Effects of crystal orientations of the facets on the structural stability of metallic Ni nanorods. J Nanopart Res 12:795–800. doi:10.1007/s11051-009-9778-8 CrossRefGoogle Scholar
  41. Pawlow P (1909) Melting point dependence on the surface energy of a solid body. Z Phys Chem 65:1–35Google Scholar
  42. Petrova H, Juste JP, Pastoriza-Santos I, Hartland GV, Liz-Marzán LM, Mulvaneyc P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8:814–821. doi:10.1039/b514644e CrossRefGoogle Scholar
  43. Plech A, Cerna R, Kotaidis V, Hudert F, Bartels A, Dekorsy T (2007) A surface phase transition of supported gold nanoparticles. Nano Lett 7:1026–1031. doi:10.1021/nl070187t CrossRefGoogle Scholar
  44. Renka RJ, Brown R (1998) Remark on algorithm 761. ACM Trans Math Softw 24:383–385. doi:10.1145/293686.293689 CrossRefGoogle Scholar
  45. Ruan CY, Murooka Y, Raman RK, Murdick RA (2007) Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett 7:1290–1296. doi:10.1021/nl070269h CrossRefGoogle Scholar
  46. Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320. doi:10.1002/(SICI)1097-0282(199603)38:3<305:AID-BIP4>3.0.CO;2-Y CrossRefGoogle Scholar
  47. Schebarchov D, Hendy SC (2006) Superheating and solid–liquid phase coexistence in nanoparticles with nonmelting surfaces. Phys Rev Lett 96:256101. doi:10.1103/PhysRevLett.96.256101 CrossRefGoogle Scholar
  48. Smith W, Forester TR (1996) DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph 14:136–141. doi:10.1016/S0263-7855(96)00043-4 CrossRefGoogle Scholar
  49. Stauffer D, Aharony A (1994) Introduction to percolation theory, 2nd edn. Taylor & Francis, LondonGoogle Scholar
  50. Sun F, Cai W, Li Y, Duan G, Nichols WT, Liang C, Koshizaki N, Fang Q, Boyd IW (2005) Laser morphological manipulation of gold nanoparticles periodically arranged on solid supports. Appl Phys B 81:765–768. doi:10.1007/s00340-005-1978-z CrossRefGoogle Scholar
  51. Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232. doi:10.1021/jp983503o CrossRefGoogle Scholar
  52. Tenwolde PR, Ruizmontero MJ, Frenkel D (1995) Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys Rev Lett 75:2714–2717. doi:10.1103/PhysRevLett.75.2714 CrossRefGoogle Scholar
  53. Tenwolde PR, Ruizmontero MJ, Frenkel D (1996) Numerical calculation of the rate of crystal nucleation in a Lenard-Jones system at moderate undercooling. J Chem Phys 104:9932–9947. doi:10.1063/1.471721 CrossRefGoogle Scholar
  54. Tisi FD, Valtulina A (2000) Remark on algorithm 761: scattered-data surface fitting that has the accuracy of a cubic polynomial. ACM Trans Math Softw 26:46–48. doi:10.1145/347837.349795 CrossRefGoogle Scholar
  55. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New YorkGoogle Scholar
  56. Vallée F (2007) Energy exchange at short time scales: electron–phonon interactions in metals and metallic nanostructures. In: Volz S (ed) Microscale and nanoscale heat transfer. Springer, Berlin, pp 309–332. doi:10.1007/11767862_12 Google Scholar
  57. Vardeman CF, Contorti PF, Sprague MM, Gezelter JD (2005) Breathing mode dynamics and elastic properties of gold nanoparticles. J Phys Chem B 109:16695–16699. doi:10.1021/jp051575r CrossRefGoogle Scholar
  58. Wang X (2004) Thermal and thermomechanical phenomena in picosecond laser copper interaction. J Heat Transf 126:355–364. doi:10.1115/1.1725092 CrossRefGoogle Scholar
  59. Wang YT, Teitel S, Dellago C (2005) Melting of icosahedral gold nanoclusters from molecular dynamics simulations. J Chem Phys 122:214722. doi:10.1063/1.1917756 CrossRefGoogle Scholar
  60. Wang N, Rokhlin SI, Farson DF (2008) Nonhomogeneous surface premelting of Au nanoparticles. Nanotechnology 19:415701. doi:10.1088/0957-4484/19/41/415701 CrossRefGoogle Scholar
  61. Wiggins SM, Solis J, Afonso CN (2004) Influence of pulse duration on the amorphization of GeSb thin films under ultrashort laser pulses. App Phys Lett 84:4445–4447. doi:10.1063/1.1759062 CrossRefGoogle Scholar
  62. Wilson OM, Hu XY, Cahill DG (2002) Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys Rev B 66:224301. doi:10.1103/PhysRevB.66.224301 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Material Science and Engineering, Laboratory for Multiscale Processing & Characterization, Edison Joining Technology CenterThe Ohio State UniversityColumbusUSA

Personalised recommendations