Skip to main content
Log in

Peculiar features of heat capacity for Cu and Ni nanoclusters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The heat capacity of copper and nickel clusters (from 2 to 6 nm in diameter) was investigated in the temperature range 200–800 K using molecular dynamics method and a modified tight-binding potential. The simulation results demonstrate a very good agreement with the available experimental data at T = 200 K and a fairy good agreement at higher temperatures. A number of regular trends are revealed in computer experiments which agree with the corresponding theoretical predictions. A conclusion is made that in the case of single free clusters the heat capacity may exceed the capacity of the corresponding bulk material. It is found that at 200 K, the copper nanocluster (D = 6 nm) heat capacity is higher by 10% and for nickel cluster by 13%. The difference diminishes with increasing the nanoparticles size proportionally to the relative number of surface atoms. A conclusion is made that very high values of the nanostructure heat capacity observed in laboratory experiments should not be attributed to free clusters, i.e., the effect in question is caused by other reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen YY, Yao YD, Jen SU et al (1995a) Magnetic susceptibility and low temperature specific heat of palladium nanocrystals. Nanostruct Mater 6:605–608

    Article  CAS  Google Scholar 

  • Chen YY, Yao YD, Lin BT et al (1995b) Specific heat of fine copper particles. Nanostruct Mater 6:597–600

    Article  Google Scholar 

  • Cheng HP, Li X, Whetten RL, Berry RS (1992) Complete statistical thermodynamics of the cluster solid-liquid transition. Phys Rev A 46:791–800

    Article  CAS  Google Scholar 

  • Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33

    Article  CAS  Google Scholar 

  • Comsa GH, Heitkamp D, Rade HS (1976) Specific heat of ultrafine vanadium particles in the temperature range 1.3–10 K. Solid State Commun 20:877–880

    Article  CAS  Google Scholar 

  • Gafner SL, Redel LV, Gafner YY (2009) Simulation of the processes of structuring of copper nanoclusters in terms of the tight-binding potential. JETP 108:784–799

    Article  CAS  Google Scholar 

  • Goll G, Lohneyen H (1995) Specific heat of nanocrystalline and colloidal noble metals at low temperatures. Nanostruct Mater 6:559–562

    Article  Google Scholar 

  • Gu MX, Sun CQ, Chen Z, Au Yeung TC, Li S, Tan CM, Nosik V (2007) Size, temperature, and bond nature dependence of elasticity and its derivatives on extensibility, Debye temperature, and heat capacity of nanostructures. Phys Rev A 75:125403

    Google Scholar 

  • Gusev AI (2005) Nanomaterials, nanostructures and nanotechnologies. Fizmatlit, Moscow, p 416

    Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Kusche R, Hippler Th, Schmidt M, Issendorf B, Haberland H (1999) Melting of free sodium clusters. J Eur Phys D 9:1–4

    CAS  Google Scholar 

  • Lai SK, Lin WD, Wu KL, Li WH, Lee KC (2004) Specific heat and Lindemann-like parameter of metallic clusters: Mono- and polyvalent metals. J Chem Phys 121:1487–1498

    Article  CAS  Google Scholar 

  • Liu CS, Xia J, Zh ZG, Sun DY (2001) The cooling rate dependence of crystallization for liquid copper: a molecular dynamics study. J Chem Phys 114:7506–7512

    Article  CAS  Google Scholar 

  • Makarov GN (2010) Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles. Phys Usp 53:179–198

    Article  CAS  Google Scholar 

  • Morokhov ID, Petinov VI, Trusov LI, Petrunin VF (1981) Structure and properties of fine metallic particles. Sov Phys Usp 24:295–317

    Article  Google Scholar 

  • Nonnenmacher ThP (1975) Quantum size effect on the specific heat of small particles. Phys Lett A 51:213–214

    Article  Google Scholar 

  • Nosé S (1984a) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255

    Article  Google Scholar 

  • Nosé S (1984b) A unified formulation of the constant temperature molecular dynamics methods. J Phys Chem 81:511–519

    Article  Google Scholar 

  • Pang T (2006) An introduction to computational physics. Cambridge University Press, Cambridge, p 385

    Google Scholar 

  • Qi Y, Cagin T, Johnson WL, Goddart WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394

    Article  CAS  Google Scholar 

  • Rupp J, Birringer R (1987) Enhanced specific-heat-capacity (cp) measurements (150–300 K) of nanometer-sized crystalline materials. Phys Rev B 36:7888–7890

    Article  CAS  Google Scholar 

  • Salian UA (1998) Microcanonical temperature and “heat capacity” computational of Lennard-Jones clusters under isoergic molecular dynamics simulation. J Chem Phys 108:6342–6346

    Article  CAS  Google Scholar 

  • Schmidt M, Kusche R, Kronmüller W, Issendorf B, Haberland H (1997) Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms. Phys Rev Lett 79:99–102

    Article  CAS  Google Scholar 

  • Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35:1–159

    Article  Google Scholar 

  • Suzdalev IP (2006) Nanotechnology: physico-chemistry of nanoclusters, nanostructures and nanomaterial. ComKniga, Moscow, p 592 (in Russian)

    Google Scholar 

  • Trampenau J, Bauszus K, Petry W, Herr U (1995) Vibrational behavior of nanocrystalline Ni. Nanostruct Mater 6:551–554

    Article  Google Scholar 

  • Yao YD, Chen YY, Hsu CM et al (1995) Thermal and magnetic studies of nanocrystalline Ni. Nanostruct Mater 6:933–936

    Article  Google Scholar 

  • Zemlyanov MG, Paganova GKh, Syrykh GF, Shikov AA (2006) Size effects on the vibrations of Cu-Pb nanocomposites. Phys Solid State 48:139–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was prepared under the financial support of Russian Foundation for Basic Research (grant No. 10-02-98-001-r_Siberia_a), grant of President of Russian Federation (No. MK-2207.2009.2) and in frames of the research program “Scientific and pedagogical stuffs of the innovation Russia 2009–2013”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gafner, S.L., Redel, L.V., Gafner, Y.Y. et al. Peculiar features of heat capacity for Cu and Ni nanoclusters. J Nanopart Res 13, 6419–6425 (2011). https://doi.org/10.1007/s11051-011-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0394-z

Keywords

Navigation