Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6409–6418

Anodic TiO2 nanotubes powder and its application in dye-sensitized solar cells

Research Paper


An increasing energy demand and environmental pollution create a pressing need for clean and sustainable energy solutions. TiO2 semiconductor material is expected to play an important role in helping solve the energy crisis through effective utilization of solar energy based on photovoltaic devices. Dye-sensitized solar cells (DSSCs) are potentially lower cost alternative to inorganic silicon-based photovoltaic cells. In this study, we report on the fabrication of DSSCs from anodic TiO2 nanotubes (NT) powder, produced by rapid breakdown potentiostatic anodization of Ti foil in 0.1 M HClO4 electrolyte, as photoanode. TiO2 NT powders with a typical NT outer diameter of approximately 40 nm, wall thickness of approximately 8–15 nm, and length of about 20–25 μm, have been synthesized. The counter electrode was made by electrodeposition of Pt from an aqueous solution of 5 mM H2PtCl6 onto fluorine-doped tin oxide (FTO) glass substrate. The above front-side illuminated DSSCs were compared with back-side illuminated DSSCs fabricated from anodic TiO2 NTs that were grown on the top of Ti foil as photoanode. The highest cell efficiency was 3.54% under 100 mW/cm2 light intensity (1 sun AM 1.5G light, Jsc = 14.3 mA/cm2, Voc = 0.544 V, FF = 0.455). To the best of our knowledge, this is the first report on the fabrication of DSSC from anodic TiO2 NTs powder. The TiO2/FTO photoanodes were characterized by FE-SEM, XRD, and UV–Visible spectroscopy. The catalytic properties of Pt/FTO counter electrodes have been examined by cyclic voltammetry.


Dye-sensitized solar cells Nanostructures Titania nanotubes Pt counter electrode Energy conversion 


  1. Chen Q, Xu D (2009) Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310–6314CrossRefGoogle Scholar
  2. Choi KS, Farland Mc EW, Stucky GD (2003) Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly. Adv Mater 15:2018–2021CrossRefGoogle Scholar
  3. Fahim NF, Sekino T (2009) A novel method for synthesis of titania nanotube powders using rapid breakdown anodization. Chem Mat 21:1967–1979CrossRefGoogle Scholar
  4. Fahim NF, Morks MF, Sekino T (2009a) Electrochemical synthesis of silica-doped high aspect-ratio titania nanotubes as nanobioceramics for implant applications. Electrochim Acta 54:3255–3269CrossRefGoogle Scholar
  5. Fahim NF, Sekino T, Morks MF, Kusunose T (2009b) Electrochemical growth of vertically-oriented high aspect ratio titania nanotubes by rapid anodization in fluoride-free media. Nanosci Nanotechnol 9:1803–1818CrossRefGoogle Scholar
  6. Falaras P (1998) Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide. Sol Energy Mater Sol Cells 53:163–175CrossRefGoogle Scholar
  7. Grätzel M (2006) The advent of mesoscopic injection solar cells. Prog Photovolt 14:429–442CrossRefGoogle Scholar
  8. Hahn R, Stergiopoulus T, Macak JM, Tsoukleris D, Kontos AG, Albu SP, Kim D, Ghicov A, Kunze J, Falaras P, Schmuki P (2007) Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization—a comparison. Phys Stat Sol (RRL) 1:135–137CrossRefGoogle Scholar
  9. Ito S, Cevey Ha NL, Rothenberger G, Liska P, Comte P, Zakeeruddin SM, Pechy P, Nazeeruddin MK, Grätzel M (2006) High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun (Cambridge) 38:4004–4006CrossRefGoogle Scholar
  10. Kang TS, Smith AP, Taylor BE, Durstock M (2009) Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett 9:601–606CrossRefGoogle Scholar
  11. Lin CJ, Yu WY, Chien SH (2007) Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells. Appl Phys Lett 91:233120–233123. doi:10.1063/1.2823604 CrossRefGoogle Scholar
  12. Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259CrossRefGoogle Scholar
  13. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  14. Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti−Fe−O nanotube array Films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7:2356–2364CrossRefGoogle Scholar
  15. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2 bis(2,2′-bipyridyl-4,4′-decarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  16. Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S (2004) Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. J Photochem Photobiol A 164:145–151CrossRefGoogle Scholar
  17. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  18. Ong KG, Varghese OK, Mor GK, Shankar K, Grimes CA (2007) Application of finite-difference time domain to dye-sensitized solar cells: the effect of nanotube-array negative electrode dimensions on light absorption. Solar Energy Mater Solar Cells 91:250–257CrossRefGoogle Scholar
  19. Orel ZC, Gunde MK, Orel B (1997) Application of the Kubelka–Munk theory for the determination of the optical properties of solar absorbing paints. Prog Org Coat 30:59–66CrossRefGoogle Scholar
  20. Park JH, Lee TW, Kang MG (2008) Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chem Commun (25):2867–2869. doi:10.1039/B800660A
  21. Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nano Technol 17:1446–1448Google Scholar
  22. Popat KC, Eltgroth M, La Tempa TJ, Grimes CA, Desai TA (2007a) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Small 3:1878–1881CrossRefGoogle Scholar
  23. Popat KC, Leoni L, Grimes CA, Desai TA (2007b) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28:3188–3197CrossRefGoogle Scholar
  24. Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled hybrid polymer–TiO2 nanotube array heterojunction solar cells. Langmuir 23:12445–12449CrossRefGoogle Scholar
  25. Sommeling PM, O’Regan BC, Haswell RR, Smit HJP, Bakker NJ, Smits JJT, Kroon JM, van Roosmalen JAM (2006) Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B 110:19191–19197CrossRefGoogle Scholar
  26. Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P (2008) Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology 19:235602–235608. doi:10.1088/0957-4484/19/23/235602 CrossRefGoogle Scholar
  27. Varghese OK, Yang X, Kendig J, Paulose M, Zeng KPC, Ong KG, Grimes CA (2006) Transcutaneous hydrogen sensor: from design to application. Sens Lett 4:120–128CrossRefGoogle Scholar
  28. Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnology 4:592–597. doi:10.1038/nnano.2009.226 CrossRefGoogle Scholar
  29. Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261CrossRefGoogle Scholar
  30. Wang D, Liu L (2010) Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem Mater 22:6656–6664. doi:10.1021/cm102622x CrossRefGoogle Scholar
  31. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre for Micro-PhotonicsSwinburne University of TechnologyHawthornAustralia
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations