Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 6013–6020 | Cite as

Metal-phthalocyanine array on the moiré pattern of a graphene sheet

  • Mattia Scardamaglia
  • Giuseppe Forte
  • Silvano Lizzit
  • Alessandro Baraldi
  • Paolo Lacovig
  • Rosanna Larciprete
  • Carlo Mariani
  • Maria Grazia Betti
Special Issue: Nanostructured Materials 2010


Iron-phthalocyanine (FePc) molecules have been adsorbed on a graphene sheet prepared on the Ir(111) surface. The FePc molecules are flat-lying on graphene, as determined by near-edge X-ray absorption fine-structure, constituting a sub-nanometer thick molecular array at the single-layer coverage. The flat FePc single-layer presents a weak interaction of the organic macrocycle with the graphene surface and Ir subsurface substrate. Further FePc deposition on top of the first flat single-layer determines a three-dimensional island growth with varying molecular orientation.


Thin film Synthesis Nanocomposites Graphene Metal-phthalocyanine Moiré Growth morphology Molecular orientation 



We acknowledge the fruitful experimental collaboration of Xenia De Lucia and Pierluigi Gargiani. Work supported by the PRIN project of MIUR, by Università di Roma “La Sapienza”, and by the Elettra Synchrotron Radiation facility in Trieste.


  1. Åhlund J, Schnadt J, Nilson K, Göthelid E, Schliessing J, Besenbacher F, Mårtensson N, Puglia C (2007) The adsorption of iron phthalocyanine on graphite: a scanning tunnelling microscopy study. Surf Sci 601:3661–3667CrossRefGoogle Scholar
  2. Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen TG, Hofmann P, Hornekær L (2010) Band gap opening in graphene induced by patterned hydrogen adsorption. Nat Mater 9:315–319CrossRefGoogle Scholar
  3. Baraldi A, Comelli G, Lizzit S, Kiskinova M, Paolucci G (2003) Real-time X-ray photoelectron spectroscopy of surface reactions. Surf Sci Rep 49:169–224CrossRefGoogle Scholar
  4. Betti MG, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C (2010) Localized and dispersive electronic states at ordered FePc and CoPc chains on Au(110). J Phys Chem C 114: 21638–21644CrossRefGoogle Scholar
  5. Calabrese A, Floreano L, Verdini A, Mariani C, Betti MG (2009) Filling empty states in a CuPc single layer on the Au(110) surface via electron injection. Phys Rev B 79: 115446CrossRefGoogle Scholar
  6. Castro Neto AH, Guinea GF, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  7. Chen W, Huang H, Chen S, Gao XY, Wee ATS (2008) Low-temperature scanning tunneling microscopy and near-edge X-ray absorption fine structure investigations of molecular orientation of copper(II) phthalocyanine thin films at organic heterojunction interfaces. J Phys Chem C 112:5036–5042CrossRefGoogle Scholar
  8. Coraux J, N’Diaye AT, Engler M, Busse C, Wall D, Buckanie N, Meyer zu Heringdorf FJ, van Gastel R, Poelsema B, Michely T (2009) Growth of graphene on Ir(111). New J Phys 11:023006CrossRefGoogle Scholar
  9. Corradini V, Menozzi C, Cavallini M, Biscarini F, Betti MG, Mariani C (2003) Growth morphology and electronic structure of 2D ordered pentacene on the Au(110)-(1 × 2) surface. Surf Sci 249:532–535Google Scholar
  10. Cossaro A, Cvetko D, Bavdek G, Floreano L, Gotter R, Morgante A, Evangelista F, Ruocco A (2004) Copper-phthalocyanine induced reconstruction of Au(110). J Phys Chem B 108:14671–14676CrossRefGoogle Scholar
  11. Enderlein C, Kim YS, Bostwick A, Rotenberg E, Horn K (2010) The formation of an energy gap in graphene on ruthenium by controlling the interface. New J Phys 12:033014CrossRefGoogle Scholar
  12. Evangelista F, Ruocco A, Pasca D, Baldacchini C, Betti MG, Corradini V, Mariani C (2004) Au(110) induced reconstruction by π conjugated molecules adsorption investigated by photoemission spectroscopy and low energy electron diffraction. Surf Sci 79:566–568Google Scholar
  13. Evangelista F, Ruocco A, Gotter R, Cossaro A, Floreano L, Morgante A, Crispoldi F, Betti MG, Mariani C (2009) Electronic states of CuPc chains on the Au(110) surface. J Chem Phys 131:174710CrossRefGoogle Scholar
  14. Floreano L, Cossaro A, Gotter R, Verdini A, Bavdek G, Evangelista F, Ruocco A, Morgante A, Cvetko D (2008) Periodic arrays of Cu-phthalocyanine chains on Au(110). J Phys Chem C 112:10794–10802CrossRefGoogle Scholar
  15. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918CrossRefGoogle Scholar
  16. Gargiani P, Angelucci M, Mariani C, Betti MG (2010a) Metal-phthalocyanine chains on the Au(110) surface: interaction states versus d-metal states occupancy. Phys Rev B 81:085412CrossRefGoogle Scholar
  17. Gargiani P, Calabrese A, Mariani C, Betti MG (2010b) Control of electron injection barrier by electron doping of metal phthalocyanines. J Phys Chem C 114:12258–12264CrossRefGoogle Scholar
  18. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  19. Grüneis A, Vyalikh DV (2008) Tunable hybridization between electronic states of graphene and a metal surface. Phys Rev B 77:193401CrossRefGoogle Scholar
  20. Isvoranu C, Åhlund J, Wang B, Ataman E, Mårtensson N, Puglia C, Andersen JN, Bocquet ML, Schnadt J (2009) Electron spectroscopy study of the initial stages of iron phthalocyanine growth on highly oriented pyrolitic graphite. J Chem Phys 131:214709CrossRefGoogle Scholar
  21. Lacovig P, Pozzo M, Alfè D, Vilmercati P, Baraldi A, Lizzit S (2009) Growth of dome-shaped carbon nanoislands on Ir(111): the intermediate between carbidic clusters and quasi-free-standing graphene. Phys Rev Lett 103:166101CrossRefGoogle Scholar
  22. Lu X, Hipps KW, Wang XD, Mazur U (1996) Scanning tunneling microscopy of metal phthalocyanines: d7 and d9 cases. J Am Chem Soc 118: 7197–7202CrossRefGoogle Scholar
  23. Lu X, Hipps KW (1997) Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases. J Phys Chem B 101:5391–5396CrossRefGoogle Scholar
  24. Mao J, Zhang H, Jiang Y, Pan Y, Gao M, Xiao W, Gao HJ (2009) Tunability of supramolecular kagome lattices of magnetic phthalocyanines using graphene-based moiré patterns as templates. J Am Chem Soc 131:14136–14137CrossRefGoogle Scholar
  25. Memeo R, Ciccacci F, Mariani C, Ossicini S (1983) On the use of the Auger technique for quantitative analysis of overlayers. Thin Solid Films 109:159–167CrossRefGoogle Scholar
  26. N’Diaye AT, Coraux J, Plasa TN, Busse C, Michely T (2008) Structure of epitaxial graphene on Ir(111). New J Phys 10:043033CrossRefGoogle Scholar
  27. Nagashima A, Tejima N, Oshima C (1994) Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. Phys Rev B 50:17487–17495CrossRefGoogle Scholar
  28. Ossicini S, Memeo R, Ciccacci F (1985) AES analysis of the growth mechanism of metal layers on metal surfaces. J Vac Sci Technol A 3:387–391CrossRefGoogle Scholar
  29. Ottaviano L, Di Nardo S, Lozzi L, Passacantando M, Picozzi P, Santucci S (1997) Thin and ultra-thin films of nickel phthalocyanine grown on highly oriented pyrolitic graphite: an XPS, UHV-AFM and air-tapping mode AFM study. Surf Sci 373:318–332CrossRefGoogle Scholar
  30. Pletikosič I, Kralj M, Pervan P, Brako R, Coraux J, N’Diaye AT, Busse C, Michely T (2009) Dirac cones and minigaps for graphene on Ir(111). Phys Rev Lett 102:056808CrossRefGoogle Scholar
  31. Pletikosič I, Kralj M, Sokcevič D, Brako R, Lazič P, Pervan P (2010) Photoemission and density functional theory study of Ir(111): energy band gap mapping. J Phys 22:135006Google Scholar
  32. Preobrajenski AB, May Ling Ng, Vinogradov AS, Mårtensson N (2008) Controlling graphene corrugation on lattice-mismatched substrates. Phys Rev B 78:073401CrossRefGoogle Scholar
  33. Stöhr J (1992) The angular dependence of resonance intensities. In: Ertl G, Gomer R, Mills DL (eds) NEXAFS spectroscopy, Springer series in surface sciences. Springer-Verlag, BerlinGoogle Scholar
  34. Takami T, Carrizales C, Hipps K (2009) Commensurate ordering of iron phthalocyanine on Ag(111) surface. Surf Sci 603:3201–3204CrossRefGoogle Scholar
  35. Varykhalov A, Sánchez-Barriga J, Shikin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O (2008) Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett 101:157601CrossRefGoogle Scholar
  36. Zhou SY, Siegel DA, Fedorov AV, Lanzara A (2008) Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys Rev Lett 101:086402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mattia Scardamaglia
    • 1
  • Giuseppe Forte
    • 1
  • Silvano Lizzit
    • 2
  • Alessandro Baraldi
    • 3
    • 4
  • Paolo Lacovig
    • 2
  • Rosanna Larciprete
    • 5
  • Carlo Mariani
    • 1
  • Maria Grazia Betti
    • 1
  1. 1.Dipartimento di FisicaUniversità di Roma La SapienzaRomaItaly
  2. 2.Sincrotrone TriesteTriesteItaly
  3. 3.Department of Physics, Center of Excellence for Nanostructured MaterialsUniversity of TriesteTriesteItaly
  4. 4.IOM-CNR Laboratorio TASCTriesteItaly
  5. 5.CNR-ICSRomaItaly

Personalised recommendations