Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 4337–4348 | Cite as

CW laser-induced photothermal conversion and shape transformation of gold nanodogbones in hydrated chitosan films

  • Fulvio Ratto
  • Paolo Matteini
  • Alberto Cini
  • Sonia Centi
  • Francesca Rossi
  • Franco Fusi
  • Roberto Pini
Research Paper

Abstract

We investigate the photothermal conversion and transformation of gold nanoparticles with an initial dogbone shape after dispersion in hydrated chitosan films, which is a representative model of biological tissue, and excitation by a CW diode laser for 1 min. Gold nanodogbones are observed to undergo a distinct modification above a sharp threshold of ~11 W cm−2 and 110 °C. Surprisingly, the very same modification is achieved up to at least 36 W cm−2 and 250 °C. We use an analytical model derived from Gans theory to associate the change in color of the films with the change in shape statistics of these gold nanoparticles. This model proves both convenient and dependable. We interpret the photothermal transformation as a rearrangement of particles with a dogbone shape and an aspect ratio of 4.1 into rods with an aspect ratio of 2.5, where material from the end lobes of the dogbones may relocate to the waists of the rods. In turn, additional transitions to stable gold nanospheres may exhibit fairly slower kinetics.

Keywords

Gold nanorods Chitosan Gans theory Photothermal conversion Shape transformation Modeling and simulation 

Notes

Acknowledgments

We are grateful to Dr. Cosimo Trono for the refractometry measurements and Prof. Stefano Cavalieri for useful discussions. This work was supported by the NANO-TREAT and NANO-CHROM projects of the Health Board of Tuscany and the FP7 NoE Photonics 4 Life.

References

  1. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333CrossRefGoogle Scholar
  2. Alpert J, Hamad-Schifferli K (2010) Effect of ligands on thermal dissipation from gold nanorods. Langmuir 26:3786–3789CrossRefGoogle Scholar
  3. Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138–13142CrossRefGoogle Scholar
  4. Calandra P, Giordano C, Longo A, Turco Liveri V (2006) Physicochemical investigation of surfactant-coated gold nanoparticles synthesized in the confined space of dry reversed micelles. Mat Chem Phys 98:494–499CrossRefGoogle Scholar
  5. Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709CrossRefGoogle Scholar
  6. Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237CrossRefGoogle Scholar
  7. Chen LC, Wei CW, Souris JS, Cheng SH, Chen CT, Yang CS, Li PC, Lo LW (2010a) Enhanced photoacoustic stability of gold nanorods by silica matrix confinement. J Biomed Opt 15:016010CrossRefGoogle Scholar
  8. Chen YS, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010b) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18:8867–8877CrossRefGoogle Scholar
  9. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990CrossRefGoogle Scholar
  10. Dong Y, Ruan Y, Wang H, Zhao Y, Bi D (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93:1553–1558CrossRefGoogle Scholar
  11. Dos Santos DS, Goulet PJG, Pieczonka NPW, Oliveira ON, Aroca RF (2004) Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir 20:10273–10277CrossRefGoogle Scholar
  12. Eghtedari M, Oraevsky AA, Copland JA, Kotov NA, Conjusteau A, Motamedi M (2007) High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 7:1914–1918CrossRefGoogle Scholar
  13. Eghtedari M, Liopo A, Copland JA, Oraevsky AA, Motamedi M (2009) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9:287–291CrossRefGoogle Scholar
  14. Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705CrossRefGoogle Scholar
  15. Eustis S, El-Sayed MA (2006) Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J Appl Phys 100:044324CrossRefGoogle Scholar
  16. Fujie T, Matsutani N, Kinoshita M, Okamura Y, Saito A, Takeoka S (2009) Adhesive, flexible, and robust polysaccharide nanosheets integrated for tissue-defect repair. Adv Funct Mater 19:2560–2568CrossRefGoogle Scholar
  17. Gans R (1912) Uber die Form ultramikroskopischer Goldteilchen. Ann Phys 37:881–900CrossRefGoogle Scholar
  18. Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070CrossRefGoogle Scholar
  19. Goodrich GP, Bao L, Gill-Sharp K, Sang KL, Wang J, Payne JD (2010) Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J Biomed Opt 15:018001CrossRefGoogle Scholar
  20. Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672CrossRefGoogle Scholar
  21. Guo HY, Ruan FX, Lu LH, Hu JW, Pan JA, Yang ZL, Ren B (2009) Correlating the shape, surface plasmon resonance, and surface-enhanced Raman scattering of gold nanorods. J Phys Chem C 113:10459–10464CrossRefGoogle Scholar
  22. Horiguchi Y, Honda K, Kato Y, Nakashima N, Niidome Y (2008) Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir 24:12026–12031CrossRefGoogle Scholar
  23. Huang CJ, Chiu PH, Wang YH, Meen TH, Yang CF (2007) Synthesis and characterization of gold nanodogbones by the seeded mediated growth method. Nanotechnology 18:395603Google Scholar
  24. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy using gold nanoparticles. Lasers Med Sci 23:217–228CrossRefGoogle Scholar
  25. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910CrossRefGoogle Scholar
  26. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132CrossRefGoogle Scholar
  27. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefGoogle Scholar
  28. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067CrossRefGoogle Scholar
  29. Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf A 295:228–232CrossRefGoogle Scholar
  30. Jiang H, Su W, Caracci S, Bunning TJ, Cooper T, Adams WW (1996) Optical waveguiding and morphology of chitosan thin films. J Appl Polym Sci 61:1163–1171CrossRefGoogle Scholar
  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  32. Jose J, Manohar S, Kolkman RGM, Steenbergen W, van Leeuwen TG (2009) Imaging of tumor vasculature using Twente photoacoustic systems. J Biophoton 2:707–717CrossRefGoogle Scholar
  33. Kaczmarek H, Zawadzkia J (2010) Chitosan pyrolysis and adsorption properties of chitosan and its carbonizate. Carbohydr Res 345:941–947CrossRefGoogle Scholar
  34. Kang H, Jia B, Li J, Morrish D, Gu M (2010) Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam. Appl Phys Lett 96:063702CrossRefGoogle Scholar
  35. Khlebtsov NG (2010) Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence. J Nanophoton 4:041587CrossRefGoogle Scholar
  36. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111:1–35CrossRefGoogle Scholar
  37. Khlebtsov BN, Khanadeev VA, Khlebtsov NG (2008) Observation of extra-high depolarized light scattering spectra from gold nanorods. J Phys Chem C 112:12760–12768CrossRefGoogle Scholar
  38. Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov N (2011) A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J Phys Chem C DOI:10.1021/jp2000078
  39. Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, Yeh CS (2010) Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Ang Chem Int Ed 49:2711–2715Google Scholar
  40. Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452:76–79CrossRefGoogle Scholar
  41. Lapotko DO, Lukianova E, Oraevsky AA (2006) Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Laser Surg Med 38:631–642CrossRefGoogle Scholar
  42. Li PC, Huang SW, Wei CW, Chiou YC, Chen CD, Wang CRC (2005) Photoacoustic flow measurements by use of laser-induced shape transitions of gold nanorods. Opt Lett 30:3341–3343CrossRefGoogle Scholar
  43. Liao CK, Huang SW, Wei CW, Li PC (2007) Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system. J Biomed Opt 12:064006CrossRefGoogle Scholar
  44. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, nonradiative, and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453CrossRefGoogle Scholar
  45. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  46. Link S, Wang ZL, El-Sayed MA (2000a) How does a gold nanorod melt? J Phys Chem B 104:7867–7870CrossRefGoogle Scholar
  47. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000b) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163CrossRefGoogle Scholar
  48. Liu Y, Mills EN, Composto RJ (2009) Tuning optical properties of gold nanorods in polymer films through thermal reshaping. J Mat Chem 19:2704–2709CrossRefGoogle Scholar
  49. Matteini P, Ratto F, Rossi F, Centi S, Dei L, Pini R (2010a) Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives. Adv Mater 22:4313–4316CrossRefGoogle Scholar
  50. Matteini P, Ratto F, Rossi F, Rossi G, Esposito G, Puca A, Albanese A, Maira A, Pini R (2010b) In vivo carotid artery closure by laser activation of hyaluronan-embedded gold nanorods. J Biomed Opt 15:041508CrossRefGoogle Scholar
  51. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445CrossRefGoogle Scholar
  52. Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. University Press, Cambridge, UKGoogle Scholar
  53. Mishchenko MI, Zakharova NT, Videen G, Khlebtsov NG, Wriedt T (2010) Comprehensive T-matrix reference database: a 2007–2009 update. J Quantitat Spectrosc Radiat Transf 111:650–658CrossRefGoogle Scholar
  54. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523CrossRefGoogle Scholar
  55. Mulvaney P, Perez-Juste J, Giersig M, Liz-Marzan LM, Pecharroman C (2006) Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 1:61–66CrossRefGoogle Scholar
  56. Ni W, Kou X, Yang Z, Wang JF (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2:677–686CrossRefGoogle Scholar
  57. Niemz MH (2003) Laser-tissue interactions: fundamentals and applications. Springer-Verlag, Berlin Heidelberg, GermanyGoogle Scholar
  58. Niidome Y, Urakawa S, Kawahara M, Yamada S (2003) Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation. Jpn J Appl Phys 42:1749–1750CrossRefGoogle Scholar
  59. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  60. Park K, Koerner H, Vaia RA (2010) Depletion-induced shape and size selection of gold nanoparticles. Nano Lett 10:1433–1439CrossRefGoogle Scholar
  61. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005a) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901CrossRefGoogle Scholar
  62. Perez-Juste J, Rodriguez-Gonzalez B, Mulvaney P, Liz-Marzan LM (2005b) Optical control and patterning of gold-nanorod–poly(vinyl alcohol) nanocomposite films. Adv Funct Mat 15:1065–1071CrossRefGoogle Scholar
  63. Petrova H, Perez-Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzan LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8:814–821CrossRefGoogle Scholar
  64. Qiu L, Larson TA, Smith DK, Vitkin E, Zhang S, Modell MD, Itzkan I, Hanlon EB, Korgel BA, Sokolov KV, Perelman LT (2007) Single gold nanorod detection using confocal light absorption and scattering spectroscopy. IEEE J Sel Topics Quantum Electron 13:1730–1738CrossRefGoogle Scholar
  65. Qiu L, Larson TA, Vitkin E, Guo L, Hanlon EB, Itzkan I, Sokolov KV, Perelman LT (2010) Gold nanorod light scattering labels for biomedical imaging. Biomed Opt Exp 1:135–142CrossRefGoogle Scholar
  66. Ratto F, Locatelli A, Fontana S, Kharrazi S, Ashtaputre S, Kulkarni SK, Heun S, Rosei F (2006) Diffusion dynamics during the nucleation and growth of Ge/Si nanostructures on Si(111). Phys Rev Lett 96:096103CrossRefGoogle Scholar
  67. Ratto F, Johnston TW, Heun S, Rosei F (2008) A numerical approach to quantify self-ordering among self-organized nanostructures. Surf Sci 602:249–258CrossRefGoogle Scholar
  68. Ratto F, Matteini P, Rossi F, Menabuoni L, Tiwari N, Kulkarni SK, Pini R (2009) Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine 5:143–151Google Scholar
  69. Ratto F, Matteini P, Rossi F, Pini R (2010) Size and shape control in the overgrowth of gold nanorods. J Nanopart Res 12:2029–2036CrossRefGoogle Scholar
  70. Ratto F, Matteini P, Centi S, Rossi F, Pini R (2011) Gold nanorods as new nanochromophores for photothermal therapies. J Biophotonics 4:64–73CrossRefGoogle Scholar
  71. Rossi F, Matteini P, Ratto F, Menabuoni L, Lenzetti I, Pini R (2008) Laser tissue welding in ophthalmic surgery. J Biophoton 1:331–342CrossRefGoogle Scholar
  72. Sprunken DP, Omi H, Furukawa K, Nakashima H, Sychugov I, Kobayashi Y, Torimitsu K (2007) Influence of the local environment on determining aspect-ratio distributions of gold nanorods in solution using gans theory. J Phys Chem C 111:14299–14306CrossRefGoogle Scholar
  73. Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006) Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17:4431–4435CrossRefGoogle Scholar
  74. Tao J, Lu YH, Zheng RS, Lin KQ, Xie ZG, Luo ZF, Li SL, Wang P, Ming H (2008) Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods. Chin Phys Lett 25:4459–4462CrossRefGoogle Scholar
  75. Thomsen S (1991) Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions. Photochem Photobiol 53:825–835Google Scholar
  76. Tollan CM, Marcilla R, Pomposo JA, Rodriguez J, Aizpurua J, Molina J, Mecerreyes D (2009) Irreversible thermochromic behavior in gold and silver nanorod/polymeric ionic liquid nanocomposite films. ACS Appl Mater Interfaces 1:348–352CrossRefGoogle Scholar
  77. Ungureanu C, Amelink A, Rayavarapu RG, Sterenborg HJCM, Manohar S, van Leeuwen TG (2010) Differential pathlength spectroscopy for the quantitation of optical properties of gold nanoparticles. ACS Nano 4:4081–4089CrossRefGoogle Scholar
  78. Von Maltzahn G, Park JH, Agrawal A, Kishor Bandaru N, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69:3892–3900CrossRefGoogle Scholar
  79. Wang YT, Teitel S, Dellago C (2005) Surface-driven bulk reorganization of gold nanorods. Nano Lett 5:2174–2178CrossRefGoogle Scholar
  80. Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3:80–86CrossRefGoogle Scholar
  81. Xu XD, Cortie MB (2006) Shape change and color gamut in gold nanorods, dumbbells, and dog bones. Adv Funct Mat 16:2170–2176CrossRefGoogle Scholar
  82. Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Fulvio Ratto
    • 1
  • Paolo Matteini
    • 1
  • Alberto Cini
    • 2
  • Sonia Centi
    • 3
  • Francesca Rossi
    • 1
  • Franco Fusi
    • 3
  • Roberto Pini
    • 1
  1. 1.Institute of Applied PhysicsNational Research Council of ItalySesto FiorentinoItaly
  2. 2.Department of Physics and AstronomyUniversity of FlorenceSesto FiorentinoItaly
  3. 3.Department of Clinical PhysiopathologyUniversity of FlorenceFlorenceItaly

Personalised recommendations