Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 4109–4120 | Cite as

Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles

  • Hao Shen
  • Seungpyo Hong
  • Robert K. Prud’homme
  • Ying Liu
Research Paper

Abstract

We present an experimental study of self-assembled polymeric nanoparticles in the process of flash nanoprecipitation using a multi-inlet vortex mixer (MIVM). β-Carotene and polyethyleneimine (PEI) are used as a model drug and a macromolecule, respectively, and encapsulated in diblock copolymers. Flow patterns in the MIVM are microscopically visualized by mixing iron nitrate (Fe(NO3)3) and potassium thiocyanate (KSCN) to precipitate Fe(SCN) x (3−x)+ . Effects of physical parameters, including Reynolds number, supersaturation rate, interaction force, and drug-loading rate, on size distribution of the nanoparticle suspensions are investigated. It is critical for the nanoprecipitation process to have a short mixing time, so that the solvent replacement starts homogeneously in the reactor. The properties of the nanoparticles depend on the competitive kinetics of polymer aggregation and organic solute nucleation and growth. We report the existence of a threshold Reynolds number over which nanoparticle sizes become independent of mixing. A similar value of the threshold Reynolds number is confirmed by independent measurements of particle size, flow-pattern visualization, and our previous numerical simulation along with experimental study of competitive reactions in the MIVM.

Keywords

Reynolds number Supersaturation Competitive kinetics Nucleation and growth Micellization Micromixing Synthesis Colloids 

Notes

Acknowledgments

We thank Dr. Hayat Onyuksel at University of Illinois at Chicago for providing Dynamic Light Scattering for the measurements of nanoparticle sizes.

References

  1. Allen C, Eisenberg A, Mrsic J, Maysinger D (2000) Pcl-b-peo micelles as a delivery vehicle for fk506: assessment of a functional recovery of crushed peripheral nerve. Drug Deliv 7(3):139–145CrossRefGoogle Scholar
  2. Ayame H, Morimoto N, Akiyoshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery. Bioconj Chem 19(4):882–890. doi: 10.1021/bc700422s CrossRefGoogle Scholar
  3. Baleux B (1972) Colorimetric determination of nonionic polyethylene oxide surfactants using an iodine-iodide solution. CR Acad Sci Ser C 279:1617–1620Google Scholar
  4. Cheng JC, Olsen MG, Fox RO (2009) A microscale multi-inlet vortex nanoprecipitation reactor: Turbulence measurement and simulation. Appl Phys Lett 94(20):3. doi: 10.1063/1.3125428 Google Scholar
  5. Cho KJ, Wang X, Nie SM, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316CrossRefGoogle Scholar
  6. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Jeong SY (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31(1):106–114CrossRefGoogle Scholar
  7. Dirksen JA, Ring TA (1991) Fundamentals of crystallization: kinetic effects on particle-size distributions and morphology. Chem Eng Sci 46(10):2389–2427CrossRefGoogle Scholar
  8. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4CrossRefGoogle Scholar
  9. Geng Y, Discher DE (2005) Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc 127(37):12780–12781. doi: 10.1021/ja053902e CrossRefGoogle Scholar
  10. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new x-ray contrast agent. Br J Radiol 79(939):248–253. doi: 10.1259/bjr/13169882 CrossRefGoogle Scholar
  11. Hoang TKN, Deriemaeker L, La VB, Finsy R (2004) Monitoring the simultaneous Ostwald ripening and solubilization of emulsions. Langmuir 20(21):8966–8969CrossRefGoogle Scholar
  12. Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase: theory, experiment, and use. Angew Chem Int Ed Engl 40(23):4331–4361CrossRefGoogle Scholar
  13. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120. doi: 10.1021/ja057254a CrossRefGoogle Scholar
  14. Johnson BK (2003) Flash nanoprecipitation of organic actives via confined micromixing and block copolymer stabilization. Princeton University, PrincetonGoogle Scholar
  15. Johnson BK, Prud’homme RK (2003a) Chemical processing and micromixing in confined impinging jets. AIChE Journal 49(9):2264–2282CrossRefGoogle Scholar
  16. Johnson BK, Prud’homme RK (2003b) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56:1021–1024. doi: 10.1071/ch03115 CrossRefGoogle Scholar
  17. Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 22(13):1697–1704CrossRefGoogle Scholar
  18. Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res 60(16):4440–4445Google Scholar
  19. Kumar V, Prud’Homme RK (2008) Thermodynamic limits on drug loading in nanoparticle cores. J Pharm Sci 97(11):4904–4914CrossRefGoogle Scholar
  20. Kumar V, Prud’homme RK (2009) Nanoparticle stability: processing pathways for solvent removal. Chem Eng Sci 64(6):1358–1361CrossRefGoogle Scholar
  21. Kumar V, Wang L, Riebe M, Tung HH, Prud’homme RK (2009) Formulation and stability of ltraconazole and odanacatib nanoparticles: governing physical parameters. Mol Pharm 6(4):1118–1124. doi: 10.1021/mp900002t CrossRefGoogle Scholar
  22. Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20(5):357–403CrossRefGoogle Scholar
  23. Lavasanifar A, Samuel J, Kwon GS (2001) Micelles self-assembled from poly(ethylene oxide)-block-poly(n-hexyl stearate l-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin b. J Control Release 77(1–2):155–160CrossRefGoogle Scholar
  24. Lee LS, Conover C, Shi C, Whitlow M, Filpula D (1999) Prolonged circulating lives of single-chain fv proteins conjugated with polyethylene glycol: a comparison of conjugation chemistries and compounds. Bioconj Chem 10(6):973–981CrossRefGoogle Scholar
  25. Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G, Vauthier C (2007) Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 344:33–43. doi: 10.1016/j.ijpbarm.2007.05.054 CrossRefGoogle Scholar
  26. Li SD, Chen YC, Hackett MJ, Huang L (2008) Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 16(1):163–169. doi: 10.1038/sj.mt.6300323 CrossRefGoogle Scholar
  27. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1–2):35–50CrossRefGoogle Scholar
  28. Lin WJ, Juang LW, Lin CC (2003) Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res 20(4):668–673CrossRefGoogle Scholar
  29. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano 2(5):889–896. doi: 10.1021/nn800072t CrossRefGoogle Scholar
  30. Liu Y, Kathan K, Saad W, Prud’homme RK (2007) Ostwald ripening of beta-carotene nanoparticles. Phys Rev Lett 98(3):036102. doi: 10.1103/PhysRevLett.98.036102 CrossRefGoogle Scholar
  31. Liu Y, Cheng CY, Prud’homme RK, Fox RO (2008a) Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci 63(11):2829–2842. doi: 10.1016/j.ces.2007.10.020 CrossRefGoogle Scholar
  32. Liu Y, Tong Z, Prud’homme RK (2008b) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64(8):808–812. doi: 10.1002/ps.1566 CrossRefGoogle Scholar
  33. Mao SR, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/siRNA polyplexes. Bioconj Chem 17(5):1209–1218. doi: 10.1021/bc060129j CrossRefGoogle Scholar
  34. Mitra S, Gaur U, Ghosh PC, Maitra AN (2001) Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323CrossRefGoogle Scholar
  35. Monkenbusch M, Schneiders D, Richter D, Willner L, Leube W, Fetters LJ, Huang JS, Lin M (2000) Aggregation behaviour of pe–pep copolymers and the winterization of diesel fuel. Physica B-Condensed Matter 276:941–943CrossRefGoogle Scholar
  36. Mosqueira VCF, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R, Devissaguet JP, Barratt G (2001) Biodistribution of long-circulating peg-grafted nanocapsules in mice: effects of peg chain length and density. Pharm Res 18(10):1411–1419CrossRefGoogle Scholar
  37. Mullin JW (1993) Crystallization, 3rd edn. Butterworth Heinemann, Oxford, UKGoogle Scholar
  38. Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE (2003) Polymer vesicles in vivo: correlations with peg molecular weight. J Control Release 90(3):323–334. doi: 10.1016/s0168-3659(03)00201-3 CrossRefGoogle Scholar
  39. Russ B, Liu Y, Prud’homme RK (2010) Optimized descriptive model for micromixing in a vortex mixer. Chem Eng Commun 197(8):1068–1075CrossRefGoogle Scholar
  40. Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340. doi: 10.1002/ijc.20405 CrossRefGoogle Scholar
  41. Shuai XT, Ai H, Nasongkla N, Kim S, Gao JM (2004a) Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 98(3):415–426. doi: 10.1016/j.jconrel.2004.06.003 CrossRefGoogle Scholar
  42. Shuai XT, Merdan T, Schaper AK, Xi F, Kissel T (2004b) Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconj Chem 15(3):441–448. doi: 10.1021/bc034113u CrossRefGoogle Scholar
  43. Sun TM, Du JZ, Yan LF, Mao HQ, Wang J (2008) Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29(32):4348–4355. doi: 10.1016/j.biomaterials.2008.07.036 CrossRefGoogle Scholar
  44. Thioune O, Fessi H, Devissaguet JP, Puisieux F (1997) Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm 146(2):233–238CrossRefGoogle Scholar
  45. Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19(22):9127–9133. doi: 10.1021/la030090w CrossRefGoogle Scholar
  46. Tyrrell Z, Winoto W, Shen YQ, Radosz M (2009) Block copolymer micelles formed in supercritical fluid can become water-dispensable nanoparticles: poly(ethylene glycol)-block-poly(epsilon-caprolactone) in trifluoromethane. Ind Eng Chem Res 48(4):1928–1932. doi: 10.1021/ie801472n CrossRefGoogle Scholar
  47. Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen TN, Mork PC, Stenstad P, Hornes E, Olsvik O (1992) Preparation and application of new monosized polymer particles. Prog Polym Sci 17(1):87–161CrossRefGoogle Scholar
  48. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058. doi: 10.1007/s11095-008-9800-3 CrossRefGoogle Scholar
  49. Wang YL, Dave RN, Pfeffer R (2004) Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. J Supercrit Fluids 28(1):85–99. doi: 10.1016/s0896-8446(03)00011-1 CrossRefGoogle Scholar
  50. Xie JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888. doi: 10.1021/ja806804u CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hao Shen
    • 1
  • Seungpyo Hong
    • 2
  • Robert K. Prud’homme
    • 3
  • Ying Liu
    • 1
    • 2
  1. 1.Department of Chemical EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Biopharmaceutical SciencesUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations