Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 3939–3949 | Cite as

Manipulation of subwavelength optical fields and resonant field enhancements of a silver-shell nanocylinder pair and chain waveguides with different core–shell patterns

  • Yuan-Fong Chau
  • Huang-Yi Li
  • Zheng-Hong Jiang
  • Yi-Fan Chen
  • Chih-Sheng Lin
  • Min-Shun Liu
  • Fong-Lin Wu
  • Din Ping Tsai
Research Paper

Abstract

Near field optical properties and surface plasmon resonances on a pair of silver-shell nanocylinder and nanochain waveguides with different core–shell patterns which interact with incident plane wave along chain axis are numerically investigated by using the finite element method. Simulation results show that the peak wavelengths and resonant field enhancements are highly tunable by using the nanoshell particles instead of solid ones, revealing a critical relationship among the wavelengths and illuminated direction of incident light, interparticle spacing, radii, and medium of dielectric holes and the patterns of chain waveguides. Besides, nanochain waveguides with different patterns of core–shell that are operated on resonant multipolar modes can provide higher propagation intensities and the transmission ability can be increased by decreasing the size of nanocylinders along the chain axis.

Keywords

Surface plasmon resonances Dielectric holes Nanochain Nanoscale optics Modeling and simulation 

Notes

Acknowledgments

The authors are thankful for the financial support from National Science Council, Taiwan, ROC, under Grant number NSC 99-2112-M-231-001-MY3 and NSC-99-2120-M-002-012. They would also like to thank National Center for High-Performance Computing for support by providing computing facility and software.

References

  1. Ballav M, Chowdhury AR (2006) On a study of diffraction and dispersion managed soliton in a cylindrical media. Prog Electromagn Res PIER 63:33–50CrossRefGoogle Scholar
  2. Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2007) Strong coupling of single emitters to surface plasmons. Phys Rev B 76:035420CrossRefGoogle Scholar
  3. Chau YF, Tsai DP (2007) Three dimensional analysis of silver nano particles doping effects on super resolution near-field structure. Opt Commun 269:389–394CrossRefGoogle Scholar
  4. Chau YF, Yang TJ, Tsai DP (2004) Imaging properties of three dimensional aperture near-field scanning optical microscopy and optimized near-field fiber probe designs. Jpn J Appl Phys 43:8115–8125CrossRefGoogle Scholar
  5. Chau YF, Yeh HH, Tsai DP (2006) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561CrossRefGoogle Scholar
  6. Chen Y, Wang Y, Zhang Y, Liu S (2008) Numerical investigation of the transmission enhancement through subwavelength hole array. Opt Commun 274:236–240CrossRefGoogle Scholar
  7. Christian G, Romain Q (2004) Near-field optical transmittance of metal particle chain waveguides. Opt Express 12:6141–6146CrossRefGoogle Scholar
  8. COMSOL Multiphysics V4.1 (2010). http://www.comsol.com
  9. Gao Z, Zhang XF, Shen LF (2010) Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. J Appl Phys 108:113104CrossRefGoogle Scholar
  10. Ghenuche P, Quidant R, Badenes G (2005) Cumulative plasmon field enhancement in finite metal particle chains. Opt Lett 30:1882–1884CrossRefGoogle Scholar
  11. Gresho, Sani RL (2000) Incompressible flow and finite element method, vol 1 and 2. Wiley, New YorkGoogle Scholar
  12. Hernandez JV, Noordam LD, Robicheaux F (2005) Asymmetric response in a line of optically driven metallic nanospheres. J Phys Chem B109:15808–15811Google Scholar
  13. Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82:257–259CrossRefGoogle Scholar
  14. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  15. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, New YorkGoogle Scholar
  16. Krenn JR, Dereux A, Weeber JC, Bourillot E, Lacroute Y, Goudnnet JP (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82:2590–2593CrossRefGoogle Scholar
  17. Maier SA (2005) Plasmonics—towards subwavelength optical devices. Curr Nanosci 1:17–22CrossRefGoogle Scholar
  18. Mitatha S (2009) Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications. Prog Electromagn Res PIER 99:383–404CrossRefGoogle Scholar
  19. Nordlander P, Oubre C (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:5899–5903Google Scholar
  20. Okamoto T, Kawata S (eds) (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin, p 99Google Scholar
  21. Ozbay E (2005) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  22. Raether H (1998) Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, vol 3. Springer-Verlag, BerlinGoogle Scholar
  23. Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625CrossRefGoogle Scholar
  24. Shen LF, Yang TJ, Chau YF (2007) A 50/50 beam splitter using a one-dimensional metal photonic crystal with a parabola-like dispersion behavior. Appl Phys Lett 90:251909CrossRefGoogle Scholar
  25. Shen LF, Yang TJ, Chau YF (2008) Effect of internal period on the optical dispersion of indefinite-medium materials. Phys Rev B 77:205124CrossRefGoogle Scholar
  26. Sweatlock LA, Maier SA, Atwater HA, Penninkhof JJ, Polman A (2005) Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B 71:235408CrossRefGoogle Scholar
  27. Vlasov Y, Green WMJ, Xia F (2008) High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics 2:242–246CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yuan-Fong Chau
    • 1
  • Huang-Yi Li
    • 1
  • Zheng-Hong Jiang
    • 1
  • Yi-Fan Chen
    • 1
  • Chih-Sheng Lin
    • 1
  • Min-Shun Liu
    • 1
  • Fong-Lin Wu
    • 1
  • Din Ping Tsai
    • 2
  1. 1.Department of Electronic EngineeringChing Yun UniversityJung-LiTaiwan, ROC
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations