Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 6075–6083

The effect of the single-spin defect on the stability of the in-plane vortex state in 2D magnetic nanodots

  • S. Mamica
  • J.-C. S. Lévy
  • Ph. Depondt
  • M. Krawczyk
Special Issue: Nanostructured Materials 2010


The aim of this study is to analyse the stability of the single in-plane vortex state in two-dimensional magnetic nanodots with a nonmagnetic impurity (single-spin defect) at the centre. Small square and circular dots including up to a few thousand of spins are studied by means of a microscopic theory with nearest-neighbour exchange interactions and dipolar interactions fully taken into account. We calculate the spin-wave frequencies versus the dipolar-to-exchange interaction ratio d to find the values of d for which the assumed state is stable. Transitions to other states and their dependence on d and the vortex size are investigated as well, with two types of transition found: vortex core formation for small d values (strong exchange interactions), and in-plane reorientation of spins for large d values (strong dipolar interactions). Various types of localized spin waves responsible for these transitions are identified.


Magnetic nanodots Magnetic vortices Localized spin waves Ground state stability 


  1. Aharoni A (2000) Introduction of the theory of ferromagnetism, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  2. Aliev FG, Sierra JF, Awad AA, Kakazei GN, Han D-S, Kim S-K, Metlushko V, Ilic B, Guslienko KY (2009) Spin waves in circular soft magnetic dots at the crossover between vortex and single domain state. Phys Rev B 79:174433. doi:10.1103/PhysRevB.79.174433 CrossRefGoogle Scholar
  3. Cowburn RP, Welland ME (2000) Room temperature magnetic quantum cellular automata. Science 287:1466–1468. doi:10.1126/science.287.5457.1466 CrossRefGoogle Scholar
  4. Cowburn RP, Koltsov DK, Adeyeye AO, Welland ME, Tricker DM (1999) Single-domain circular nanomagnets. Phys Rev Lett 83:1042–1045. doi:10.1103/PhysRevLett.83.1042 CrossRefGoogle Scholar
  5. Giovannini L, Montoncello F, Nizzoli F, Gubbiotti G, Carlotti G, Okuno T, Shinjo T, Grimsditch M (2004) Spin excitations of nanometric cylindrical dots in vortex and saturated magnetic states. Phys Rev B 70:172404. doi:10.1103/PhysRevB.70.172404 CrossRefGoogle Scholar
  6. Gubbiotti G, Madami M, Tacchi S, Carlotti G, Pasquale M, Singh N, Goolaup S, Adeyeye AO (2007) Field evolution of the magnetic normal modes in elongated permalloy nanometric rings. J Phys Condens Matter 19:406229. doi:10.1088/0953-8984/19/40/406229 CrossRefGoogle Scholar
  7. Montoncello F, Giovannini L, Nizzoli F, Vavassori P, Grimsditch M, Ono T, Gubbiotti G, Tacchi S, Carlotti G (2007) Soft spin waves and magnetization reversal in elliptical permalloy nanodots: experiments and dynamical matrix results. Phys Rev B 76:024426. doi:10.1103/PhysRevB.76.024426 CrossRefGoogle Scholar
  8. Montoncello F, Giovannini L, Nizzoli F, Tanigawa H, Ono T, Gubbiotti G, Madami M, Tacchi S, Carlotti G (2008) Magnetization reversal and soft modes in nanorings: transitions between onion and vortex states studied by Brillouin light scattering. Phys Rev B 78:104421. doi:10.1103/PhysRevB.78.104421 CrossRefGoogle Scholar
  9. Mozaffari MR, Esfarjani K (2007) Spin dynamics characterization in magnetic dots. Phys B 399:81. doi:10.1016/j.physb.2007.05.023 CrossRefGoogle Scholar
  10. Rocha JCS, Coura PZ, Leonel SA, Dias RA, Costa BV (2010) Diagram for vortex formation in quasi-two-dimensional magnetic dots. J Appl Phys 107:053903. doi:10.1063/1.3318605 CrossRefGoogle Scholar
  11. Ross CA (2001) Patterned magnetic recording media. Annu Rev Mater Res 31:203–235CrossRefGoogle Scholar
  12. Skomski R (2008) Simple models of magnetism. Oxford University Press, OxfordCrossRefGoogle Scholar
  13. Vollmer R, Etzkorn M, Anil Kumar PS, Ibach H, Kirschner J (2004) Spin-wave excitation in ultrathin Co and Fe films on Cu(001) by spin-polarized electron energy loss spectroscopy (invited). J Appl Phys 95:7435. doi:10.1063/1.1689774 CrossRefGoogle Scholar
  14. Wysin GM (2003) Vortex-vacancy interactions in two-dimensional easy-plane magnets. Phys Rev B 68:184411. doi:10.1103/PhysRevB.68.184411 CrossRefGoogle Scholar
  15. Zaspel CE, McKennan CM, Snaric SR (1996) Instability of planar vortices in layered ferromagnets with nonmagnetic impurities. Phys Rev B 53:11317–11319. doi:10.1103/PhysRevB.53.11317 CrossRefGoogle Scholar
  16. Zivieri R, Nizzoli F (2008) Dipolar magnetic fields of spin excitations in vortex-state cylindrical ferromagnetic dots. Phys Rev B 78:064418. doi:10.1103/PhysRevB.78.064418 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • S. Mamica
    • 1
  • J.-C. S. Lévy
    • 2
  • Ph. Depondt
    • 3
  • M. Krawczyk
    • 1
  1. 1.Surface Physics Division, Faculty of PhysicsA. Mickiewicz UniversityPoznańPoland
  2. 2.Lab. MPQ, UMR CNRS 7162Université Paris 7ParisFrance
  3. 3.INSP, UMR CNRS 7588Université Paris 6Paris Cedex 05France

Personalised recommendations