Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5899–5908 | Cite as

Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

  • K. Cendrowski
  • X. Chen
  • B. Zielinska
  • R. J. Kalenczuk
  • M. H.  Rümmeli
  • B. Büchner
  • R. Klingeler
  • E. Borowiak-PalenEmail author
Special Issue: Nanostructured Materials 2010


The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.


Silica nanospheres Mesoporous silica nanospheres Titanium dioxide Core/shell structure Photocatalytic activity 



Authors are grateful for financial support of Polish Foundation for Science within FOCUS Program (F4/2010) and EU commission within “Carbio” project on “Multifunctional carbon nanotubes for biomedical application”—Marie Curie Fellowship (EU), MHR thanks the EU (ECEMP) and the Freistaat Sachsen.


  1. Bian SW, Ma Z, Zhang LS, Niu F, Song WG (2009) Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chem Comm 14:1261–1263CrossRefGoogle Scholar
  2. Chen SL (1998) Preparation of monosize silica spheres and their crystalline stack. Physicochem Eng Asp 142:59–63CrossRefGoogle Scholar
  3. Chen HM, He JH, Tang HM, Yan CX (2008) Porous silica nanocapsules and nanospheres: dynamic self-assembly synthesis and application in controlled release. Chem Mater 20:5894–5900CrossRefGoogle Scholar
  4. Das DP, Parida KM, Mishra BK (2007) A study on the structural properties of mesoporous silica spheres. Mater Lett 61:3942–3945CrossRefGoogle Scholar
  5. Deng X, Yue Y, Gao Z (2002) Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations. Appl Catal 39:135–147CrossRefGoogle Scholar
  6. Deng YH, Qi DW, Deng CH, Zhang XM, Zhao DY (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4·SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRefGoogle Scholar
  7. Fei HL, Liu YP, Li YP, Sun PC, Yuan ZZ, Li BH, Ding DT, Chen TH (2007) Selective synthesis of borated meso-macroporous and mesoporous spherical TiO2 with high photocatalytic activity. Micropor Mesopor Mater 102:318–324CrossRefGoogle Scholar
  8. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  9. Jia BP, Gao L, Sun J (2007) Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon 45:1476–1481CrossRefGoogle Scholar
  10. Kingam KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Miner 79:269–273Google Scholar
  11. Kim W, Suh DJ, Park TJ, Hong IK (2007) Photocatalytic degradation of methanol on titiania and titania-silica aerogels prepared by non-alkoxide sol–gel route. Top Catal 44:499–505CrossRefGoogle Scholar
  12. Le Y, Pu M, Chen J (2007) Theoretical and experimental studies on the silica hollow spheres. J Non-Cryst Solids 353:164–169CrossRefGoogle Scholar
  13. Lee YG, Park JH, Oh C, Oh SG, Kim YC (2007) Preparation of highly monodispersed hybrid silica spheres using a one-step sol−gel reaction in aqueous solution. Langmuir 23:10875–10878CrossRefGoogle Scholar
  14. Li M, Hong Z, Fang Y, Huang F (2008) Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide. Mater Res Bull 43:2179–2186CrossRefGoogle Scholar
  15. Lim SH, Phonthammachai N, Pramana SS, White TJ (2008) Robust gold-decorated silica−titania pebbles for low-temperature CO catalytic oxidation. Langmuir 24:6226–6231CrossRefGoogle Scholar
  16. Long R, Dai Y, Huang B (2009) Structural and electronic properties of iodine-doped anatase and rutile TiO2. Comput Mater Sci 45:223–228CrossRefGoogle Scholar
  17. Muruganandham M, Swaminathan M (2006) Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes Pigmen 68:133–142CrossRefGoogle Scholar
  18. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28CrossRefGoogle Scholar
  19. Park MVDZ, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, McKerr G, Howard CY, Lynch I, Dawson KA, Piersma AH, Jong WH (2009) In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240:108–116CrossRefGoogle Scholar
  20. Stober W, Fink A, Bohn EJ (1968) Controlled growth of monodisperse silica spheres in the micron size range. Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  21. Tan LK, Kumar MK, An WW, Gao H (2010) Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. Am Chem Soc Appl Mater Interfaces 2:498–503CrossRefGoogle Scholar
  22. Tian G, Dong L, Wei C, Huang J, He H, Shao J (2006) Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature. Opt Mater 28:1058–1063CrossRefGoogle Scholar
  23. Wan L, Li JF, Feng JY, Sunb W, Mao ZQ (2007) Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation. Mater Sci Eng 139:216–220CrossRefGoogle Scholar
  24. Yang LM, Wang Y, Luo GS, Dai YY (2008) Preparation and functionalization of mesoporous silica spheres as packing materials for HPLC. Particuology 6:143–148CrossRefGoogle Scholar
  25. Yu H, Yu J, Cheng B (2007) Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air. Chemosphere 66:2050–2057CrossRefGoogle Scholar
  26. Zhang J, Post M, Veres T, Jakubek ZJ, Guan J, Wang DS, Normandin F, Deslandes Y, Simard B (2006) Laser-assisted synthesis of superparamagnetic Fe·Au core−shell nanoparticles. J Phys Chem 110:7122–7128Google Scholar
  27. Zhang H, Zhong X, Xu JJ, Chen HY (2008) Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 24:13748–13752CrossRefGoogle Scholar
  28. Zhu YF, Fang Y, Kaskel S (2010) Folate-conjugated Fe3O4·SiO2 hollow mesoporous spheres for targeted anticancer drug delivery. J Phys Chem 114:16382–16388Google Scholar
  29. Zielińska B, Borowiak-Palen E, Kalenczuk RJ (2011) Preparation, characterization and photocatalytic activity of metal-loaded NaNbO3. J Phys Chem Solids 72:117–123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • K. Cendrowski
    • 1
  • X. Chen
    • 1
  • B. Zielinska
    • 1
  • R. J. Kalenczuk
    • 1
  • M. H.  Rümmeli
    • 2
    • 3
  • B. Büchner
    • 2
  • R. Klingeler
    • 4
  • E. Borowiak-Palen
    • 1
    Email author
  1. 1.Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment EngineeringWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Leibniz Institute for Solid State and Materials Research DresdenDresdenGermany
  3. 3.Technische Universität DresdenDresdenGermany
  4. 4.Kichhoff-Institute for PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations