Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 3825–3833 | Cite as

Synthesis and characterization of carbon coated nanoparticles produced by a continuous low-pressure plasma process

  • Vineet Panchal
  • Manoj Neergat
  • Upendra BhandarkarEmail author
Research Paper


Core–shell nanoparticles coated with carbon have been synthesized in a single chamber using a continuous and entirely low-pressure plasma-based process. Nanoparticles are formed in an argon plasma using iron pentacarbonyl Fe(CO)5 as a precursor. These particles are trapped in a pure argon plasma by shutting off the precursor and then coated with carbon by passing acetylene along with argon as the main background gas. Characterization of the particles was carried out using TEM for morphology, XPS for elemental composition and PPMS for magnetic properties. Iron nanoparticles obtained were a mixture of FeO and Fe3O4. TEM analysis shows an average size of 7–14 nm for uncoated particles and 15–24 nm for coated particles. The effect of the carbon coating on magnetic properties of the nanoparticles is studied in detail.


Nanoparticles Core–shell structure Chemical vapor deposition Magnetic properties 



This study has been supported by Department of Science and Technology (DST), Govt. of India (project no. 06-DS-002). The authors would like to acknowledge Sophisticated Analytical Instrument Facility, IIT Bombay, Central Surface Analytical Facility (ESCA) and PPMS Laboratory, Department of Physics, IIT Bombay, for characterization of samples. The authors would also like to thank Prof. Mathur from the Department of Chemistry, IIT Bombay, for providing us with Iron Pentacarbonyl and Prof. K. G. Suresh for the discussion on magnetic properties. The authors also would like to thank Prof. P.S. Gandhi for allowing access to the clean room facility of the Suman Mashruwala MicroEngineering Laboratory (Department of Mechanical Engineering, IIT Bombay).


  1. Bai L, Wan H, Street S (2009) Preparation of ultrafine FePt nanoparticles by chemical reduction in PAMAM-OH template. Colloids Surf A Physicochem Eng Asp 349:23–28. doi: 10.1016/j.colsurfa.2009.07.041 CrossRefGoogle Scholar
  2. Barr T (1978) An ESCA study of the termination of the passivation of elemental metals. J Phys Chem 82:1801–1810. doi: 10.1021/j100505a006 CrossRefGoogle Scholar
  3. Bou M, Martin J, Mogne T (1991) Chemistry of the interface between aluminum and polyethyleneterephthalate by XPS. Appl Surf Sci 47:149–161. doi: 10.1016/0169-4332(91)90029-J CrossRefGoogle Scholar
  4. Boufendi L, Bouchoule A (1994) Particle nucleation and growth in a low pressure argon-silane discharge. Plasma Sources Sci Technol 3:267–362. doi: 10.1088/0963-0252/3/3/004 CrossRefGoogle Scholar
  5. Briggs D, Seah M (1993) Practical surface analysis vol 1, 2nd edn. John Willey and Sons, New YorkGoogle Scholar
  6. Cao H, Huang G, Xuan S, Wu Q, Gu F, Li C (2008) Synthesis and characterization of carbon coated iron core shell nanostructures. J Alloys Compd 448:272–276. doi: 10.1016/j.jallcom.2006.10.019 CrossRefGoogle Scholar
  7. Chau J, Hsu M, Kao C (2006) Microwave plasma synthesis of Co and SiC coated Co nanopowders. Mater Lett 60:67–70. doi: 10.1016/j.matlet.2005.10.054 CrossRefGoogle Scholar
  8. Davies R, Schurr G, Meenan P, Nelson R, Bergna H, Brevett C, Goldbaum R (1998) Engineered Particle Surfaces. Adv Mater 10:1264–1270. doi: 10.1002/(SICI)1521-4095(199810)10:15<1264:AID-ADMA1264>3.0.CO;2-X CrossRefGoogle Scholar
  9. Diaz L, Santos M, Ballesteros C, Marysko M, Pola J (2005) IR laser induced chemical vapor deposition of carbon coated iron nanoparticles embedded in polymer. J Mater Chem 15:4311–4317. doi: 10.1039/b509365a CrossRefGoogle Scholar
  10. Faiyas A, Vinod E, Joseph J, Ganesan R, Pandey R (2010) Dependence of pH and surface effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322:400–404. doi: 10.1016/j.jmmm.2009.09.064 CrossRefGoogle Scholar
  11. Gangopadhayay S, Hadjipanayis G, Dale B, Sorensen C, Klabunde K, Papaefthymiou V, Kostikas A (1992) Magnetic properties of ultrafine iron particles. Phys Rev B 45:9778–9790. doi: 10.1103/PhysRevB.45.9778 CrossRefGoogle Scholar
  12. Gardner S, Singamsetty C, Booth G, He G, Pittman C (1995) Surface characterization of carbon fibers using angle resolved XPS and ISS. Carbon 33:587–595. doi: 10.1016/0008-6223(94)00144-O CrossRefGoogle Scholar
  13. Gavrin A, Chien C (1990) Fabrication and magnetic properties of granular alloys. J Appl Phys 67:938–942. doi: 10.1063/1.346100 CrossRefGoogle Scholar
  14. Grimal J, Marcus P (1992) The anodic dissolution and passivation of Ni-Cr_Fe alloys studied by ESCA. Corros Sci 33:805–814. doi: 10.1016/0010-938X(92)90113-H CrossRefGoogle Scholar
  15. He Y, Sahoo Y, Wang S, Luo H, Prasad P, Swihart M (2006) Laser driven synthesis and magnetic properties of iron nanoparticles. J Nanoparticle Res 8:335–342. doi: 10.1007/s11051-005-9008-y CrossRefGoogle Scholar
  16. Huber D (2005) Synthesis, properties and application of iron nanoparticles. Small 5:482–501. doi: 10.1002/smll.200500006 CrossRefGoogle Scholar
  17. Jiao J, Seraphin S, Wang X, Withers J (1996) Preparation and properties of ferromagnetic carbon coated Fe, Co, and Ni nanoparticles. J Appl Phys 80:103–108. doi: 10.1063/1.362765 CrossRefGoogle Scholar
  18. Jouan P, Peignon M, Cardinaud C, Lemperiere G (1993) Characterization of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and auger electron spectroscopy. Appl Surf Sci 68:595–603. doi: 10.1016/0169-4332(93)90241-3 CrossRefGoogle Scholar
  19. Kalyanaraman R, Yoo S, Krupashankara M, Sudarshan T, Dowding R (1998) Synthesis and consolidation of iron nanopowders. Nanostruct Mater 10:1379–1392. doi: 10.1016/S0965-9773(99)00017-3 CrossRefGoogle Scholar
  20. Kataby G, Koltypin Y, Ulman A, Felner I, Gedanken A (2002) Blocking temperatures of amorphous iron nanoparticles coated by various surfactants. Appl Surf Sci 201:191–195. doi: 10.1016/S0169-4332(02)00895-4 CrossRefGoogle Scholar
  21. Kortshagen U (2009) Non-thermal plasma synthesis of semiconductor nanocrystals. J Phys D Appl Phys 42:1113009. doi: 10.1088/0022-3727/42/11/113001 CrossRefGoogle Scholar
  22. Kouprine A (2006) Synthesis of ferromagnetic nanopowders from iron pentacarbonyl in capacitively coupled RF plasma. Carbon 44:2593–2601. doi: 10.1016/j.carbon.2006.04.033 CrossRefGoogle Scholar
  23. Liao H, Sodhi R, Coyle T (1993) Surface composition of AIN powders studied by X-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy. J Vac Sci Technol A 11(5):2681–2686. doi: 10.1116/1.578626 CrossRefGoogle Scholar
  24. Lu Y, Yin Y, Mayers B, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2:183–186. doi: 10.1021/nl015681q CrossRefGoogle Scholar
  25. McHenry M, Majetich S, Artman J (1994) Superparamagnetism in carbon coated Co particles produced by the Kratschmer carbon arc process. Phys Rev B 49:11358. doi: 10.1103/PhysRevB.49.11358 CrossRefGoogle Scholar
  26. Moncoffre N, Hollinger G, Jaffrezic H, Marest G, Tousset J (1985) Temperature influence during nitrogen implantation into steel. Nucl Instr Methods Phys Res B 7(8):177–183. doi: 10.1016/0168-583X(85)90551-8 CrossRefGoogle Scholar
  27. Poleunis C, Weng L, Sclavons M, Bertrand P, Franquinet P, Legras R, Carlier V (1995) Sizing removal and functionalization of carbon fiber surface studied by combined TOF SIMS and XPS. J Adhes Sci Technol 9:859–871. doi: 10.1163/156856195X00743 CrossRefGoogle Scholar
  28. Sahoo Y, Cheon M, Wang S, Luo H, Furlani E, Prasad P (2004) Field-directed self assembly of magnetic nanoparticles. J Phys Chem B 108:3380–3383. doi: 10.1021/jp031148i CrossRefGoogle Scholar
  29. Sano N, Akazawa H, Kikuchi T, Kanki T (2003) Separated synthesis of iron included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41:2159–2168. doi: 10.1016/S0008-6223(03)00215-X CrossRefGoogle Scholar
  30. Song H, Chen X (2003) Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durane with ferrocene. Chem Phys Lett 374:400–404. doi: 10.1016/S0009-2614(03)00773-5 CrossRefGoogle Scholar
  31. Uhm Y, Lee H, Rhee C (2009) Structure and magnetic properties of carbon encapsulated Ni nanoparticles. IEEE Trans Magnet 45:2453–2455. doi: 10.1109/TMAG.2009.2018609 CrossRefGoogle Scholar
  32. Wilson J, Poddar P, Frey N, Srikanth H, Mohomed K, Harmon J, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95:1439–1443. doi: 10.1063/1.1637705 CrossRefGoogle Scholar
  33. Wu M, Zhang Y, Hui S, Xiao T, Ge S, Hines W, Budnick J, Yacaman M (2002) Magnetic properties of SiO2 coated Fe nanoparticles. J Appl Phys 92:6809–6812. doi: 10.1063/1.1518757 CrossRefGoogle Scholar
  34. Zumdhal S (2005) Chemical principles, 5th edn. Houghton Mifflin Company, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vineet Panchal
    • 1
  • Manoj Neergat
    • 1
  • Upendra Bhandarkar
    • 2
    Email author
  1. 1.Department of Energy Science and EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations