Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 3781–3788 | Cite as

Reaction mechanism studies for platinum nanoparticle growth by atomic layer deposition

  • Xinhua Liang
  • Yun Zhou
  • Jianhua Li
  • Alan W. Weimer
Research Paper

Abstract

Mass spectrometry is used to study the reaction mechanism of platinum (Pt) atomic layer deposition (ALD) on large quantities of high surface area silica gel particles in a fluidized bed reactor. (Methylcyclopentadienyl)trimethylplatinum [(MeCp)PtMe3] and oxygen are used as precursors. Studies are conducted at a substrate temperature of 320 °C. The self-limiting behavior of ALD appears to be disrupted with overexposure of Pt precursor. The amount of the deposited Pt and the size of the Pt nanoparticles increase with an increasing overdose time of Pt precursor. This can be explained by the thermal decomposition of Pt precursor at the reaction temperature of 320 °C and the in situ sintering of Pt nanoparticles forming larger particles. This finding is significant and its understanding is essential for better control of Pt deposition to achieve desirable morphological and structural properties for different application requirements.

Keywords

Noble metal Platinum (Pt) Atomic layer deposition (ALD) Nanoparticle Sintering 

Supplementary material

11051_2011_299_MOESM1_ESM.doc (1.5 mb)
Supplementary material (DOC 1522 kb)

References

  1. Aaltonen T, Rahtu A, Ritala M, Leskela M (2003a) Reaction mechanism studies on atomic layer deposition of ruthenium and platinum. Electrochem Solid State Lett 6:C130–C133CrossRefGoogle Scholar
  2. Aaltonen T, Ritala M, Sajavaara T, Keinonen J, Leskela M (2003b) Atomic layer deposition of platinum thin films. Chem Mater 15:1924–1928CrossRefGoogle Scholar
  3. Aaltonen T, Ritala M, Tung YL, Chi Y, Arstila K, Meinander K, Leskela M (2004) Atomic layer deposition of noble metals: exploration of the low limit of the deposition temperature. J Mater Res 19:3353–3358CrossRefGoogle Scholar
  4. Andreazza P, Andreazza-Vignolle C, Rozenbaum JP, Thomann AL, Brault P (2002) Nucleation and initial growth of platinum islands by plasma sputter deposition. Surf Coat Technol 151:122–127CrossRefGoogle Scholar
  5. Christensen ST, Elam JW (2010) Atomic layer deposition of Ir-Pt alloy films. Chem Mater 22:2517–2525CrossRefGoogle Scholar
  6. Elliott SD (2010) Mechanism, products, and growth rate of atomic layer deposition of noble metals. Langmuir 26:9179–9182CrossRefGoogle Scholar
  7. Jiang XR, Huang H, Prinz FB, Bent SF (2008) Application of atomic layer deposition of platinum to solid oxide fuel cells. Chem Mater 20:3897–3905CrossRefGoogle Scholar
  8. Kessels WMM, Knoops HCM, Dielissen SAF, Mackus AJM, van de Sanden MCM (2009) Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy. Appl Phys Lett 95:013114CrossRefGoogle Scholar
  9. King DM, Liang XH, Carney CS, Hakim LF, Li P, Weimer AW (2008a) Atomic layer deposition of UV-absorbing ZnO films on SiO2 and TiO2 nanoparticles using a fluidized bed reactor. Adv Funct Mater 18:607–615CrossRefGoogle Scholar
  10. King DM, Liang XH, Li P, Weimer AW (2008b) Low-temperature atomic layer deposition of ZnO films on particles in a fluidized bed reactor. Thin Solid Films 516:8517–8523CrossRefGoogle Scholar
  11. King JS, Wittstock A, Biener J, Kucheyev SO, Wang YM, Baumann TF, Giri SK, Hamza AV, Baeumer M, Bent SF (2008c) Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. Nano Lett 8:2405–2409CrossRefGoogle Scholar
  12. Li JH, Liang XH, King DM, Jiang YB, Weimer AW (2010) Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition. Appl Catal B 97:220–226CrossRefGoogle Scholar
  13. Liang XH, Hakim LF, Zhan GD, McCormick JA, George SM, Weimer AW, Spencer JA, Buechler KJ, Blackson J, Wood CJ, Dorgan JR (2007) Novel processing to produce polymer/ceramic nanocomposites by atomic layer deposition. J Am Ceram Soc 90:57–63CrossRefGoogle Scholar
  14. Liang XH, King DM, Li P, George SM, Weimer AW (2009) Nanocoating hybrid polymer films on large quantities of cohesive nanoparticles by molecular layer deposition. AIChE J 55:1030–1039CrossRefGoogle Scholar
  15. Liang XH, Barrett KS, Jiang YB, Weimer AW (2010) Rapid silica atomic layer deposition on large quantities of cohesive nanoparticles. ACS Appl Mater Interfaces 2:2248–2253CrossRefGoogle Scholar
  16. Matsushima T, Almy DB, White JM (1977) Reactivity and auger chemical-shift of oxygen adsorbed on platinum. Surf Sci 67:89–108CrossRefGoogle Scholar
  17. Setthapun W, Williams WD, Kim SM, Feng H, Elam JW, Rabuffetti FA, Poeppelmeier KR, Stair PC, Stach EA, Ribeiro FH, Miller JT, Marshall CL (2010) Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in situ XAFS analysis and water-gas shift reaction. J Phys Chem C 114:9758–9771CrossRefGoogle Scholar
  18. Zhou Y, King DM, Liang XH, Li JH, Weimer AW (2010) Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition. Appl Catal B 101:54–60CrossRefGoogle Scholar
  19. Zhu Y, Dunn KA, Kaloyeros AE (2007) Properties of ultrathin platinum deposited by atomic layer deposition for nanoscale copper-metallization schemes. J Mater Res 22:1292–1298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xinhua Liang
    • 1
  • Yun Zhou
    • 1
  • Jianhua Li
    • 1
  • Alan W. Weimer
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations