Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 3633–3641 | Cite as

Metallization of DNA on silicon surface

  • Anastasiya Olegovna PuchkovaEmail author
  • Petr Sokolov
  • Yuri Vladimirovich Petrov
  • Nina Anatolievna Kasyanenko
Research Paper


New simple way for silver deoxyribonucleic acid (DNA)-based nanowires preparation on silicon surface was developed. The electrochemical reduction of silver ions fixed on DNA molecule provides the forming of tightly matched zonate silver clusters. Highly homogeneous metallic clusters have a size about 30 nm. So the thickness of nanowires does not exceed 30–50 nm. The surface of n-type silicon monocrystal is the most convenient substrate for this procedure. The comparative analysis of DNA metallization on of n-type silicon with a similar way for nanowires fabrication on p-type silicon, freshly cleaved mica, and glass surface shows the advantage of n-type silicon, which is not only the substrate for DNA fixation but also the source of electrons for silver reduction. Images of bound DNA molecules and fabricated nanowires have been obtained using an atomic force microscope and a scanning ion helium microscope. DNA interaction with silver ions in a solution was examined by the methods of ultraviolet spectroscopy and circular dichroism.


DNA-templated nanowires Reduction of silver ions Nanobiotechnology Silicon surface DNA-bundles 


  1. Alivisatos P, Johnsson K, Peng X, Wilson T, Loweth C, Bruchez M, Schultz P (1996) Organisation of ‘nanocrystal molecules’ using DNA. Nature 382:609–611CrossRefGoogle Scholar
  2. Arakawa H, Neault J, Tajmir-Riahi H (2001) Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587CrossRefGoogle Scholar
  3. Ben-Jacob E, Hermon Z, Caspi S (1999) DNA transistor and quantum bit element: realization of nano-biomolecular logical devices. Phys Lett 263:199–202CrossRefGoogle Scholar
  4. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778CrossRefGoogle Scholar
  5. Cui S, Liu Y, Yang Z (2007) Construction of silver nanowires on DNA template by an electrochemical technique. Mater Des 28:722–725CrossRefGoogle Scholar
  6. Dittmer W, Simmel F (2004) Chains of semiconductor nanoparticles templated on DNA. Appl Phys Lett 85:633–635CrossRefGoogle Scholar
  7. Dong L, Hollis T, Connolly B, Wright N, Horrocks B, Houlton A (2007) DNA templated semiconductor nano- particle chains and wires. J Adv Mater 19:1748–1751CrossRefGoogle Scholar
  8. Farha Al-Said S, Hassanien R, Hannant J, Galindo M, Pruneanu S et al (2009) Templating Ag on DNA/polymer hybrid nanowires: control of the metal growth morphology using functional monomers. Electrochem Commun 11:550–553CrossRefGoogle Scholar
  9. Fischler M, Simon U (2007) Formation of bimetallic ag–au nanowires by metallization of artificial DNA duplexes. Small 3:1049–1055CrossRefGoogle Scholar
  10. Goodman R, Schaap I, Tardin C et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665CrossRefGoogle Scholar
  11. Gu Q, Cheng C, Haynie D (2005) Cobalt metallization of DNA: toward magnetic nanowires. Nanotechnology 16:1358–1363CrossRefGoogle Scholar
  12. Kasyanenko N, Nikolenko O, Prokhorova S et al (1997) Interaction of DNA with coordination compounds of bivalent platinum. III. Platinum compounds with two pyrimidine ligands. Mol Biol 31:240–244Google Scholar
  13. Keren K, Rotem S, Berman, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Science 302:1380–1382CrossRefGoogle Scholar
  14. Lee L (2006) Polymer nanoengineering for biomedical applications. Ann Biomed Eng 34:75–88CrossRefGoogle Scholar
  15. Li Z, Chen Y, Li X, Kamins T, Nauka K, Williams R (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4:245–247CrossRefGoogle Scholar
  16. Lu J, Yang L, Xie A, Shen Y (2009) DNA-templated photo-induced silver nanowires: fabrication and use in detection of relative humidity. Biophys Chem 145:91–97CrossRefGoogle Scholar
  17. Monson C, Woolley A (2003) DNA-templated construction of copper nanowires. Nano Lett 3:359–363CrossRefGoogle Scholar
  18. Satti A, Aherne D, Fitzmaurice D (2007) DNA-templated assembly of conducting gold nanowires. Chem Mater 19:1543–1545CrossRefGoogle Scholar
  19. Seeman N (1996) Design and engineering of nucleic acid nanoscale assemblies. Curr Opin Struct Biol 6:519–526CrossRefGoogle Scholar
  20. Storm A, Noort J, Vries S, Dekker C (2001) Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl Phys Lett 79:3881–3883CrossRefGoogle Scholar
  21. Zhao K, Chang Q, Chen X, Zhang B, Liu J (2009) Synthesis and application of DNA-templated silver nanowires for ammonia gas sensing. Mater Sci Eng 29:1191–1195CrossRefGoogle Scholar
  22. Zinchenko A, Baigl D, Chen N, Pyshkina O et al (2008) Conformational behavior of giant DNA through binding with Ag+ and metallization. Biomacromolecules 9:1981–1987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anastasiya Olegovna Puchkova
    • 1
    Email author
  • Petr Sokolov
    • 1
  • Yuri Vladimirovich Petrov
    • 2
  • Nina Anatolievna Kasyanenko
    • 1
  1. 1.Department of Molecular Biophysics, Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Interdisciplinary Resource Center for Nanotechnology of St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations