Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 3619–3631 | Cite as

Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

  • Nidhi Andhariya
  • Bhupendra Chudasama
  • R. V. Mehta
  • R. V. Upadhyay
Research Paper


Core–shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug “Methylene blue” (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core–shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.


Magnetite Silica Sol–gel Hydrolysis and condensation Nanospheres Nanocapsules Nanomedicine 


  1. Bourlinos A, Simopoulos A, Boukos N, Petridis D (2002) Magnetic modification of the external surfaces in the MCM-41 porous silica: synthesis, characterization, functionalization. J Phys Chem B 105:7432–7437CrossRefGoogle Scholar
  2. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, BostonGoogle Scholar
  3. Bruce I, Taylor J, Todd M, Davies M, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterization, application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145−160CrossRefGoogle Scholar
  4. Chen S, Dong P, Yang G, Yang J (1996) Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis, condensation of tetraethylorthosilicate. Ind Eng Chem Res 35:4487–4493CrossRefGoogle Scholar
  5. Chujo Y, Matsuki H, Kure S, Saegusa T, Yazawa T (1994) Control of pore size of porous silica by means of pyrolysis of an organic–inorganic polymer hybrid. Chem Soc Chem Commun 5:635–636CrossRefGoogle Scholar
  6. Cullity B (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publication CompanyGoogle Scholar
  7. Deng Y, Wang C, Hu J, Yang W, Fu S (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A 262:87–93CrossRefGoogle Scholar
  8. Dougherty T (1987) Photosensitiezers: therapy, detection of malignant tumors. Photochem Photobiol 45:879–889CrossRefGoogle Scholar
  9. Dougherty T, Gomer C, Henderson B, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905CrossRefGoogle Scholar
  10. Ehrlich P (1960) The collected papers of Paul Ehrlich. Pergamon, LondonGoogle Scholar
  11. Fahmy T, Fong P, Goyal A, Saltzman W (2005) Targeted nanoparticles for drug delivery. Mater Today 1:18–26CrossRefGoogle Scholar
  12. Gupta A, Gupta M (2005) Synthesis, surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  13. Hasan T, Moor A, Ortel B (2000) Cancer medicine, 5th edn. BC Decker Inc., Hamilton, ONGoogle Scholar
  14. He Y, Wang S, Li C, Miao Y, Wu Z, Zou B (2005) Synthesis, characterization of functionalized silica-coated Fe3O4superparamagnetic nanocrystals for biological applications. J Phys D 38:1342–1350CrossRefGoogle Scholar
  15. He R, You X, Shao J, Gao F, Pan B, Cui D (2007) Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 18:315601CrossRefGoogle Scholar
  16. Hilder T, Hill J (2009) Modeling the loading, unloading of drugs into nanotubes. Small 5:300–308CrossRefGoogle Scholar
  17. Hodgkins R, Ahniyaz A, Parekh K, Belova L, Bergstrom L (2007) Maghemite nanocrystal impregnation by hydrophobic surface modification of mesoporous silica. Langmuir 23:8838–8844CrossRefGoogle Scholar
  18. Huang C, Hou C, Chen C, Tsai Y, Chang L, Wei H, Hsieh K, Chan C (2008) Magnetic SiO2/Fe3O4 colloidal crystals. Nanotechnology 19:55701CrossRefGoogle Scholar
  19. Jang S, Wientjes M, Lu D, Au J (2003) Drug delivery, transport to solid tumors. Pharm Res 20:1337–1350CrossRefGoogle Scholar
  20. Kim D, Mikhaylova M, Zhang Y, Muhammed M (2003) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15:1617–1627CrossRefGoogle Scholar
  21. Konan Y, Gruny R, Allemann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66:89–106CrossRefGoogle Scholar
  22. Levy J, Obochi M (1996) New applications in photodynamic therapy introduction. Photochem Photobiol 64:737–739CrossRefGoogle Scholar
  23. Liu X, Ma Z, Xing J, Liu H (2004) Preparation, characterization of amino-silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6CrossRefGoogle Scholar
  24. Lu Z, Dai J, Song X, Wang G, Yang W (2008) Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf A 317:450–456CrossRefGoogle Scholar
  25. Mehta R, Upadhyay R, Charles S, Ramchand C (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496CrossRefGoogle Scholar
  26. Mohapatra S, Mallck S, Maiti T, Ghosh S, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:385102CrossRefGoogle Scholar
  27. Monte F, Morales MP, Levy D, Fernandez A, Ocaña M, Roig A, Molins E, Grady KO, Serna CJ (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13:3627–3634CrossRefGoogle Scholar
  28. Morel A, Nikitenko S, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core−shell nanoparticles with tunable properties. ACS Nano 2:847–856CrossRefGoogle Scholar
  29. Neal D, Hirsch L, Halas N, Payne J, West J (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176CrossRefGoogle Scholar
  30. Park S, Lim J, Kim J, Yun H, Kim C (2005) In vivo, in vitro investigation of photosensitizer-adsorbed superparamagnetic nanoparticles for photodynamic therapy. IEEE Trans Magn 41:4111–4113CrossRefGoogle Scholar
  31. Peng Z, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395CrossRefGoogle Scholar
  32. Peng ZA, Peng XG (2002) Nearly monodisperse, shape-controlled CdSe nanocrystals via alternative routes: nucleation, growth. J Am Chem Soc 124:3343–3353CrossRefGoogle Scholar
  33. Santa S, Tapec R, Theodoropoulou N, Dobson J, Hebarad A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906CrossRefGoogle Scholar
  34. Sapra S, Poppe J, Eychmiiler A (2007) CdSe nanorod synthesis: a new approach. Small 3:1886–1888CrossRefGoogle Scholar
  35. Seup C, Sun L, Bin P, Kikuo O (2004) Templated synthesis of silica hollow spheres by spray pyrolysis. J Chem Eng Jpn 37:1099–1104CrossRefGoogle Scholar
  36. Sibata C, Colussi V, Olenick N, Kinsella T (2000) Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res 33:869–880CrossRefGoogle Scholar
  37. Sieben S, Bergemann C, Lubbe A, Brockmann B, Rescheleit D (2001) Comparison of different particles, methods for magnetic isolation of circulating tumor cells. J Magn Magn Mater 225:175–179CrossRefGoogle Scholar
  38. Singhal GS, Rabinowitch E (1967) Changes in the absorption spectrum of methylene blue with pH. J Phys Chem 71:3347–3349CrossRefGoogle Scholar
  39. Stewart B, Kleihues P (2003) World Cancer Report. IARC Non-serial Publication, LyonGoogle Scholar
  40. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  41. Tada DB, Vono LLR, Duarte EL, Itri R, Kiyohara PK, Baptista MS, Rossi LM (2007) Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23:8194–8199Google Scholar
  42. Tartaj P, Gonzalez-Carreno T, Serna C (2002) Synthesis of nanomagnets dispersed in colloidal silica cages with applications in chemical separation. Langmuir 18:4556–4558CrossRefGoogle Scholar
  43. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy, imaging. AAPS J 9:E128–E147CrossRefGoogle Scholar
  44. Tsang S, Yu C, Gao X, Tam K (2006) Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J Phys Chem B 110:16914–16922CrossRefGoogle Scholar
  45. Vasir J, Labhasetwar V (2005) Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 4:363–374Google Scholar
  46. Vestal C, Zhang Z (2003) Synthesis, magnetic characterization of Mn, Co spinel ferrite-silica nanoparticles with tunable magnetic core. J Nano Lett 3:1739–1743CrossRefGoogle Scholar
  47. Zhang J, Srivastava R, Misra R (2007) Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, LCST of viable drug-targeting delivery system. Langmuir 23:6342–6351CrossRefGoogle Scholar
  48. Zhang J, Rana S, Srivastava R, Misra R (2008a) On the chemical synthesis, drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Actabiomaterialia 4:40–48Google Scholar
  49. Zhang M, Cushing B, Charles J (2008b) Synthesis, characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology 19:85601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nidhi Andhariya
    • 1
  • Bhupendra Chudasama
    • 2
  • R. V. Mehta
    • 1
  • R. V. Upadhyay
    • 3
  1. 1.Department of PhysicsBhavnagar UniversityBhavnagarIndia
  2. 2.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  3. 3.P.D. Patel Institute of Applied SciencesCharotar University of Science and TechnologyChangaIndia

Personalised recommendations