Journal of Nanoparticle Research

, Volume 13, Issue 8, pp 3431–3439 | Cite as

Structural and magnetic properties of nanocrystalline bismuth manganite obtained by mechanochemical synthesis

  • Zorica Marinković StanojevićEmail author
  • Z. Branković
  • Z. Jagličić
  • M. Jagodič
  • L. Mančić
  • S. Bernik
  • A. Rečnik
  • G. Branković
Research paper


We have studied the formation of BiMnO3 (BMO) nanocrystalline perovskite powder produced by high-energy milling of the constituent oxides. The crystal structure and the amount of crystalline and amorphous phases in the powder as a function of the milling time were determined with XRPD using Rietveld refinement. BMO perovskite formed directly from highly activated nano-sized constituent oxides after 240 min of milling and subsequently grew during prolonged milling. The morphology, structure, and chemical composition of the powder were investigated by SEM and TEM. A clear ferromagnetic transition was observed at T C ~66 K for a sample milled for 240 min and increased with milling time. The magnetic hysteresis behavior is similar to that of a soft ferromagnet. The magnetic properties of the obtained BMO powders were found to change as a function of milling time in a manner consistent with variations in the nanocomposite microstructure.


Milling X-ray methods TEM Magnetic properties Bismuth manganite Nanocomposites 



The Ministry of Science and Technological Development of the Republic of Serbia supported this work through project III45007.


  1. Atou T, Chiba H, Ohoyama K, Yamaguchi Y, Syono Y (1999) Structure determination of ferromagnetic perovskite BiMnO3. J Solid State Chem 145:639–642. doi: 10.1006/jssc.1999.8267 CrossRefGoogle Scholar
  2. Belik AA, Takayama-Muromachi E (2006) Magnetic properties of BiMnO3 studied with dc and ac magnetization and specific heat. Inorg Chem 45:10224–10229. doi: 10.ic061400b CrossRefGoogle Scholar
  3. Belik AA, Kolodiazhnyi T, Kosuda K, Takayama-Muromachi E (2009) Synthesis and properties of oxygen non-stoichiometric BiMnO3. J Mater Chem 19:1593–1600. doi: 10.1039/b818645f CrossRefGoogle Scholar
  4. Branković Z, Branković G, Vukotić V, Tararam R, Varela JA (2008) Mechanochemical synthesis of lead magnesium niobate ceramics in iron media. Metall Mater Trans A 39A:875–879. doi: 10.1007/s11661-007-9463-4 CrossRefGoogle Scholar
  5. Branković Z, Marinković Stanojević Z, Mančić L, Vukotić V, Bernik S, Branković G (2010) Multiferroic bismuth manganite prepared by mechanochemical synthesis. J Eur Ceram Soc 30:277–281. doi: 10.1016/j.jeurceramsoc.2009.06.030 CrossRefGoogle Scholar
  6. Burgio N, Iasonna A, Margini M, Martelli S, Pardella F (1990) Mechanical alloying of the Fe-Zr system. Correlation between input energy and end products. Il Nuovo Cimento 13D(4):459–476. doi: 10.1007/BF02452130 Google Scholar
  7. Chai P, Wang X, Hu S, Liu X, Liu Y, Lv M, Li G, Meng J (2009) Particle size-dependent charge ordering and magnetic properties in Pr0.55Ca0.45MnO3. J Phys Chem C 113:15817–15823. doi: 10.1021/jp901722h CrossRefGoogle Scholar
  8. Chi ZH, Xiao CJ, Feng SM, Li FY, Jin CQ, Wang XH, Chen RZ, Li LT (2005) Manifestation of ferromagnetism in multiferroic BiMnO3. J Appl Phys 98:103519–103523. doi: 10.1063/1.2131193 CrossRefGoogle Scholar
  9. Chiba H, Atou T, Syono Y (1997) Magnetic and electrical properties of B1-xSrxMnO3: hole-doping effect on ferromagnetic provskite BiMnO3. J Solid State Chem 132:139–143CrossRefGoogle Scholar
  10. Coelho AA (2006) software Topas-AcademicGoogle Scholar
  11. Delogu F, Cocco G (2006) Crystallite size refinement in elemental species under mechanical processing conditions. Mater Sci Eng A 422:198–204. doi: 10.1016/j.msea.2006.02.032 CrossRefGoogle Scholar
  12. Erenstein W, Morrison FD, Scott JF, Mathur ND (2005) Growth of highly resistive BiMnO3 films. Appl Phys Lett 87:101906. doi: 10.1063/1.2039988 CrossRefGoogle Scholar
  13. Faqir H, Chiba H, Kikuchi M, Syono Y (1999) High-temperature XRD and DTA studies of BiMnO3 perovskite. J Solid State Chem 142:113–119. doi: 10.1006/jssc.1988.7994 CrossRefGoogle Scholar
  14. Gajek M, Bibes M, Wyczisk F, Varela M, Fontcuberta J, Barthelemy A (2007) Growth and magnetic properties of multiferroic LaxBi1-xMnO3 thin films. Phys Rev B 75:174417. doi: 10.1103/PhysRevB.75.174417 CrossRefGoogle Scholar
  15. Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003) Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B 67:180401(R). doi: 10.1103/PhysRevB.67.180401 Google Scholar
  16. Kusigerski V, Markovic D, Spasojevic V, Tadic M, Zentkova M, Mihalik M (2010) Magnetic properties of nanoparticle La0.7Ca0.3MnO3 under applied hydrostatic pressure. J Nanopart Res 12:1299–1306. doi: 10.1007/s11051-010-9852-2 CrossRefGoogle Scholar
  17. Markovic D, Kusigerski V, Tadic M, Blanusa J, Antisari MV, Spasojevic V (2008) Magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glicine-nitrate method without additional heat treatment. Scripta Mat 59:35–38. doi: 10.1016/j.scriptamat.2008.02.020 CrossRefGoogle Scholar
  18. Montanari E, Calestani G, Migliori A, Dapiaggi M, Bolzoni F, Cabassi R, Gilioli E (2005a) High-temperature polymorphism in metastable BiMnO3. Chem Mater 17:6457–6467. doi: 10.1021/cm051576w CrossRefGoogle Scholar
  19. Montanari E, Righi L, Calestani G, Migliori A, Gilioli E, Bolzoni F (2005b) Room temperature polymorphism in metastable BiMnO3 prepared by high-pressure synthesis. Chem Mater 17:1765–1773. doi: 10.1021/cm048250s CrossRefGoogle Scholar
  20. Moreira dos Santos AF, Cheetham AK, Tian W, Pan X, Jia Y, Murphy NJ, Letteieri J, Schlom DG (2004) Epitaxial growth and properties of metastable BiMnO3 thin films. Appl Phys Lett 84(1):91–93. doi: 10.1063/1.1636265 CrossRefGoogle Scholar
  21. Poleti D, Karanović Lj, Zdujić M, Jovalekić Č, Branković Z (2004) Mechanochemical synthesis of γ-Bi2O3. Solid State Sci 6:239–245. doi: 10.1016/j.solidstatesciences.2003.12.003 CrossRefGoogle Scholar
  22. Stojanović BD, Paiva-Santos CO, Jovalekić Č, Simoes AZ, Filho FM, Lazarević Z, Varela JA (2006) Mechanically activating formation of layered structured bismuth titanate. Mater Chem Phys 96:471–476. doi: 10.1016/j.matchemphys.2005.07.038 CrossRefGoogle Scholar
  23. Sugawara F, Iida S, Syono Y, Akimoto S (1968) Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J Phys Soc Jpn 25:1553–1558. doi: 10.1143/JPSJ.25.1553 CrossRefGoogle Scholar
  24. Sundaresan A, Mangalam RVK, Iyo A, Tanaka Y, Rao CNR (2008) Crucial role of oxygen stoichiometry in determining the structure and properties of BiMnO3. J Mater Chem 18:2191–2193. doi: 10.1039/b803118p CrossRefGoogle Scholar
  25. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Won Molar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495. doi: 10.1126/science.1065389 CrossRefGoogle Scholar
  26. Yang CH, Koo TY, Lee SH, Song C, Lee KB, Jeong YH (2006) Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films. Europhys Lett 74:348–354. doi: 10.1209/epl/i2005-10540-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Zorica Marinković Stanojević
    • 1
    Email author
  • Z. Branković
    • 1
  • Z. Jagličić
    • 2
  • M. Jagodič
    • 2
    • 3
  • L. Mančić
    • 4
  • S. Bernik
    • 5
  • A. Rečnik
    • 5
  • G. Branković
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  3. 3.EN-FIST Centre of ExcellenceLjubljanaSlovenia
  4. 4.Institute of Technical Sciences SASABelgradeSerbia
  5. 5.Jozef Stefan InstituteLjubljanaSlovenia

Personalised recommendations