Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 6121–6131 | Cite as

Superconducting nano-striplines as quantum detectors

  • A. CasaburiEmail author
  • M. Ejrnaes
  • F. Mattioli
  • A. Gaggero
  • R. Leoni
  • N. Martucciello
  • S. Pagano
  • M. Ohkubo
  • R. Cristiano
Special Issue: Nanostructured Materials 2010

Abstract

The recent progress in the nanofabrication of superconducting films opens the road toward detectors with highly improved performances. This is the case for superconducting nano-striplines where the thickness and the width are pushed down to the extreme limits to realize detectors with unprecedented sensitivity and ultra fast response time. In this way quantum detectors for single photons at telecommunication wavelengths and for macromolecules such as proteins can be realized. As is often the case in applied nanotechnology, it is a challenge to make devices with the necessary macroscopic dimensions that are needed to interface present technologies, while maintaining the performance improvements. For nano-stripline detectors, both the fast temporal response and the device sensitivity is generally degraded when the area is increased. Here, we present how such detectors can be scaled up to macroscopic dimensions without losing the performance of the nano-structured active elements by using an innovative configuration. In order to realize ultrathin superconducting film the nano-layer is growth with a careful setup of the deposition technique which guarantees high quality and thickness uniformity at the nano-scale size. The active nano-strips are defined with the state-of-the-art electron beam nanolithography to achieve a highly uniform linewidth. We present working detectors based on nano-strips with thicknesses 9–40 nm and widths of 100–1000 nm which exhibit unprecedented speed and area coverage (40 × 40 μm2 for single photon detectors and 1 × 1 mm2 for single molecule detectors) based on niobium nitride thus enabling practical use of this nanotechnology.

Keywords

Nano-striplines Superconducting nano-devices Superconducting detectors Quantum devices Superconducting thin film 

References

  1. Casaburi A (2010) Superconducting strip-lines for mass spectrometry. Lambert Academic Publishing AG & Co KG, Saarbrücken. ISBN: 978-3-8383-9202-8Google Scholar
  2. Casaburi A, Zen N, Suzuki K, Ejrnaes M, Pagano S, Cristiano R, Ohkubo M (2009) Subnanosecond time response of large-area superconducting stripline detectors for keV molecular ions. Appl Phys Lett 94:212502-1–212502-3. doi: 10.1063/1.3142419 Google Scholar
  3. Ejrnaes M, Cristiano R, Quaranta O, Pagano S, Gaggero A, Mattioli F, Leoni R, Voronov B, Gol’tsman GN (2007) A cascade switching superconducting single photon detector. Appl Phys Lett 91: 262509-1–262509-3. doi:  10.1063/1.2828138
  4. Ejrnaes M, Casaburi A, Quaranta O, Marchetti S, Gaggero A, Mattioli F, Leoni R, Pagano S, Cristiano R (2009a) Characterization of parallel superconducting nanowire single photons detectors. Supercond Sci Technol 22:055006-1–055006-7. doi: 10.1088/0953-2048/22/5/055006 Google Scholar
  5. Ejrnaes M, Casaburi A, Cristiano R, Quaranta O, Marchetti S, Martucciello N, Pagano S, Gaggero A, Mattioli F, Leoni R, Cavalier P and Villégier JC (2009b) Timing jitter of cascade switch superconducting nanowire single photon detectors. Appl Phys Lett 95:132503-1–132503-3. doi: 10.1063/1.3237172
  6. Gol’tsman GN, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski RR (2001) Picosecond superconducting single-photon optical detector. Appl Phys Lett 79:705–707. doi: 10.1063/1.1388868 CrossRefGoogle Scholar
  7. Gol’tsman G, Minaeva O, Korneev A, Tarkhov M, Rubtsova I, Divochiy A, Milostnaya I, Chulkova G, Kaurova N, Voronov B, Pan D, Kitaygorsky J, Cross A, Pearlman A, Komissarov I, Slysz W, Wegrzecki M, Grabiec P, Sobolewski R (2007) Middle-infrared to visible-light ultrafast superconducting single-photon detectors. IEEE Trans Appl Supercond 17:246–251. doi: 10.1109/TASC.2007.898252 CrossRefGoogle Scholar
  8. Jaspan MA, Habif JL, Hadfield RH, Nam SW (2006) Heralding of telecommunication photon pairs with a superconducting single photon detector. Appl Phys Lett 89:031112-1–031112-3. doi: 10.1063/1.2219411 Google Scholar
  9. Kang L, Wu PH, Sh JR, Cai WX, Yang SZ, Ji ZM, Wang Z (2003) Fabrication and characterization of NbN, AlN and NbN/AlN/NbN on MgO substrates. Supercond Sci Technol 16:1417–1421CrossRefGoogle Scholar
  10. Kerman AJ, Dauler EA, Keicher WE, Yang JKW, Berggren KK, Gol’tsman G, Voronov B (2006) Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl Phys Lett 88:111116-1–111116-3. doi: 10.1063/1.2183810 Google Scholar
  11. Kerman AJ, Dauler EA, Yang JKW, Rosfjord KM, Anant V, Berggren KK, Gol’tsman GN, Voronov BM (2007) Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl Phys Lett 90:101110-1–101110-3. doi: 10.1063/1.2696926 Google Scholar
  12. Kerman JA, Yang JKW, Molnar RJ, Dauler EA, Berggren KK (2009) Electrothermal feedback in superconducting nanowire single-photon detectors. Phys rev B 79:100509-1–100509-4. doi: 10.1103/PhysRevB.79.100509 Google Scholar
  13. Kitaygorsky J, Komissarov I, Jukna A, Pan D, Minaeva O, Kaurova N, Divochiy A, Korneev A, Tarkhov M, Voronov B, Milostnaya I, Gol’tsman G, Sobolewski RR (2007) Dark counts in nanostructured NbN superconducting single-photons detectors and bridges. IEEE Trans Appl Supercond 17:275–278. doi: 10.1109/TASC.2007.898109 CrossRefGoogle Scholar
  14. Korneev A, Kouminov P, Matvienko V, Chulkova G, Smirnov K, Voronov B, Gol’tsman GN, Currie M, Lo W, Wilsher K, Zhang J, Słysz W, Pearlman A, Verevkin A, Sobolewski RR (2004) Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors. Appl Phys Lett 84:5338–5340. doi: 10.1063/1.1764600 CrossRefGoogle Scholar
  15. Leoni R, Mattioli F, Castellano MG, Cibella S, Pagano S, Perez de Lara D, Ejrnaes M, Lisitskyi MP, Esposito E, Cristiano R, Nappi C (2006) Fabrication and test of superconducting single photon detectors. Nucl Instrum Methods Phys Res A 559:564–566. doi: 10.1016/j.nima.2005.12.054 CrossRefGoogle Scholar
  16. Lipatov A, Okunev O, Smirnov K, Chulkova G, Korneev A, Kouminov V, Gol’tsman GN, Zhang J, Slysz V, Verevkin A, Sobolewski RR (2002) An ultrafast NbN hot-electron single-photon detector for electronic applications. Supercond Sci Technol 15:1689–1692CrossRefGoogle Scholar
  17. Mattioli F, Leoni R, Gaggero A, Castellano M G, Carelli P, Marsili F, Fiore A (2007) Electrical characterization of superconducting single-photon detectors. J Appl Phys 101:054302-1–054302-5. doi: 10.1063/1.2709527 Google Scholar
  18. Oya G, Onodera Y (1974) Transition temperatures and crystal structures of single-crystal and polycrystalline NbNx films. J Appl Phys 45:1389–1397CrossRefGoogle Scholar
  19. Semenov AD, Gol’tsmann GN, Korneev AA (2001) Quantum detection by current carrying superconducting film. Phys C 351:349–356CrossRefGoogle Scholar
  20. Suzuki K, Miki S, Shiki S, Wang Z, Ohkubo M (2008) Time resolution improvement of superconducting NbN stripline detectors for time-of-flight mass spectrometry. Appl Phys Exp 1:031702-1–031702-3. doi:  10.1143/APEX.1.031702 Google Scholar
  21. Suzuki K, Miki S, Shiki S, Zen N, Wang Z and Ohkubo M (2009) Detection area enlargement of superconducting stripline detectors for time-of-flight mass spectrometry. Phys C 469:1677–1679. doi: 10.1016/j.physc.2009.05.042 Google Scholar
  22. Tarkhov M, Claudon J, Poizat JP, Korneev A, Divochiy A, Minaeva O, Seleznev V, Kaurova N, Voronov B, Semenov AD, Gol’tsmann GN (2008) Ultrafast reset time of superconducting single photon detectors. Appl Phys Lett 92: 241112-1–241112-3. doi: 10.1063/1.2945277
  23. Villègier JC, Hadacek N, Delaet SMB, Roussy A, Febvre P, Lamura G, laval JY (2001) NbN multilayer technology on R-plane sapphire. IEEE Trans Appl Supercond 11:68–71. doi: 10.1109/77.919286 CrossRefGoogle Scholar
  24. Wang Z, Kawakami A, Uzawa Y, Komyama B (1996) Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature. J Appl Phys 79:7837–7842CrossRefGoogle Scholar
  25. Zen N, Casaburi A, Shiki S, Suzuki K, Ejrnaes M, Cristiano R, Ohkubo M (2009a) 1 mm ultrafast superconducting stripline molecule detector. Appl Phys Lett 95:172508-1–172508-3. doi: 10.1063/1.3256220
  26. Zen N, Chen Y, Suzuki K, Ohkubo M, Miki S, Wang Z (2009b) Development of superconducting strip lines detectors (SSLDs) for time-of-flight mass spectrometers (TOF-MS). IEEE Trans Appl Supercond 19:354–357. doi: 10.1109/TASC.2009.2018845 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. Casaburi
    • 1
    Email author
  • M. Ejrnaes
    • 1
  • F. Mattioli
    • 2
  • A. Gaggero
    • 2
  • R. Leoni
    • 2
  • N. Martucciello
    • 3
  • S. Pagano
    • 3
    • 4
  • M. Ohkubo
    • 5
  • R. Cristiano
    • 1
  1. 1.C.N.R.—Cybernetics Institute “E. Caianiello”PozzuoliItaly
  2. 2.C.N.R.—Institute for Photonics and NanotechnologiesRomeItaly
  3. 3.C.N.R.—SPINFiscianoItaly
  4. 4.Mathematics and Informatics Department and UniversityFiscianoItaly
  5. 5.AIST—Research Institute of Instrumentation FrontierTsukubaJapan

Personalised recommendations