Journal of Nanoparticle Research

, Volume 13, Issue 8, pp 3363–3376 | Cite as

Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst

Research paper

Abstract

Nanosheet-based microspheres of ZnO with hierarchical structures, hollow prism, and coralline-like ZnO nanostructures were successfully prepared by ultrasonic irradiation in acidic ionic liquids (AILs). The hollow spherical is made up of many thin petals, the thickness of which is only about 90 nm. In the presence of AIL2, the one prepared at a frequency of 40 kHz is a mixture of nanofibers with diameters ranging from less than 30 nm to about 100 nm. ZnO nanostructure (with AIL1) reveals lozenge-shape hollow prism structures. The products were hollow prism structure covered with some nanometric-size nanoparticles. The average size of the nanoparticles is in the range of 40–80 nm. It is found that the ultrasonic irradiation time, ultrasonic frequency, and the AILs influence the growth mechanism and optical properties of ZnO nanostructures. Producing Zno nanostructures by different traditional methods (e.g., hydrothermal method) requires basic media. These methods are not economical and environmentally friendly in many industrial processes. In so doing, a critical problem has been the point that, normally, a high concentration of base causes reactor metal corrosion. This is a simple and low-cost method, which can be expected to be applied in industry in the future. Also, importantly, the structures synthesized in this experiment can indicate a new way to construct nanodevices by self-organization in one step.

Keywords

Ionic liquid X-ray diffraction Sonochemical method Nanostructured materials Oxide materials Photoluminescence spectra Photocatalytic activity 

References

  1. Alammar T, Anja-Verena Mudring AV (2009) Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater Lett 63:732–735. doi:org/10.1016/j.matlet.2008.12.035 CrossRefGoogle Scholar
  2. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992. doi:10.1002/anie.200460091 CrossRefGoogle Scholar
  3. Augugliaro V, Litter M, Palmisano L, Soria JJ (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C: Photochem Rev 7:127–144. doi:org/10.1016/j.jphotochemrev.2006.12.001 CrossRefGoogle Scholar
  4. Behnajady MA, Modirshahla N, Hamzavi R (2006) Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J Hazard Mater B 133:226–232. doi:org/10.1016/j.jhazmat.2005.10.022 CrossRefGoogle Scholar
  5. Bolis V, Fubini B, Giamello E, Reller A (1989) Effect of form of the surface reactivity of differently prepared zinc oxides. J Chem Soc Faraday Trans 185:855–867. doi:10.1039/F19898500855 Google Scholar
  6. Bowker M, Houghton H, Waugh KC, Giddings T, Green M (2003) Crystal plane dependence of adsorption and reaction on zinc oxide. J Catal 84:252–255. doi:org/10.1016/0021-9517(83)90105-7 CrossRefGoogle Scholar
  7. Cao H, Xu JY, Zhang DZ, Chang SH, Ho ST, Seelig EW, Liu X, Chang RPH (2000) Spatial confinement of laser light in active random Media. Phys Rev Lett 84:5584–5587. doi:10.1103/PhysRevLett.84.5584 CrossRefGoogle Scholar
  8. Dantsin G, Suslick KS (2000) Sonochemical preparation of a nanostructured bifunctional catalyst. J Am Chem Soc 122:5214–5215. doi:10.1021/ja994300w CrossRefGoogle Scholar
  9. Dhananjay SB, Vishwas GP, Anthony B (2001) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116. doi:10.1002/jctb.532 Google Scholar
  10. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3691. doi:10.1021/cr010338r CrossRefGoogle Scholar
  11. Dyson PJ (2002) Synthesis of organometallics and catalytic hydrogenations in ionic liquids. Appl Organomet Chem Rev 16:495–500. doi:10.1002/aoc.337 CrossRefGoogle Scholar
  12. Guo L, Choi JH, Tabata H, Tomoji K (2001) Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. Jpn J Appl Phys 40:L177–L180. doi:10.1143/JJAP.40.L177 CrossRefGoogle Scholar
  13. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899. doi:10.1126/science.1060367 CrossRefGoogle Scholar
  14. Hwang DK, Kang SK, Lim JH, Yang EJ, Oh JY, Yang JH, Park SJ (2005) p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl Phys Lett 86:222101–222103. doi:10.1063/1.1940736 CrossRefGoogle Scholar
  15. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787. doi:org/10.1016/j.solmat.2005.11.007 CrossRefGoogle Scholar
  16. Kowsari E, Faraghi G (2010a) Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y2O3 nanocomposite with controlled conductivity. Ultrason Sonochem 17:718–725. doi:10.1016/j.ultsonch.2009.11.018 CrossRefGoogle Scholar
  17. Kowsari E, Faraghi G (2010b) Synthesis by an ionic liquid-assisted method and optical properties of nanoflower Y2O3. J Mater Res Bull 45:939–945. doi:10.1016/j.materresbull.2010.04.015 CrossRefGoogle Scholar
  18. Kowsari E, Mallakmohamadi M (2011) Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason Sonochem 18:447–454. doi:org/10.1016/j.ultsonch.2010.07.020 CrossRefGoogle Scholar
  19. Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137. doi:org/10.1016/S0045-6535(02)00787-7 CrossRefGoogle Scholar
  20. Li ZQ, Xiong YJ, Xie Y (2003) Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorg Chem 42:8105–8109. doi:10.1021/ic034029q CrossRefGoogle Scholar
  21. Li F, Hu L, Li Z, Huang X (2008) Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method. J Alloys Compounds 465:L14–L19. doi:org/10.1016/j.jallcom.2007.11.009 CrossRefGoogle Scholar
  22. Liu B, Yu SH, Zhang F, Li L, Zhang Q, Ren L, Jiang K (2004) Ring-like nanosheets standing on spindle-like rods: unusual ZnO superstructures synthesized from a flake like precursor Zn5(OH)8Cl2·H2O. J Phys Chem B. 108:4338–4341. doi:10.1021/jp049881c CrossRefGoogle Scholar
  23. Movahedi M, Kowsari E, Mahjoub AR, Yavari I (2008) A task specific basic ionic liquid for synthesis of flower-like ZnO by hydrothermal method. Mater Lett 62:3856–3858. doi:org/10.1016/j.matlet.2008.05.002 CrossRefGoogle Scholar
  24. Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 97:357–358. doi:10.1016/S0040-6031(00)00373-7 Google Scholar
  25. Oxley JD, Prozorov T, Suslick KS (2003) Sonochemistry and sonoluminescence of room-temperature ionic liquids. J Am Chem Soc 125:11138–11139CrossRefGoogle Scholar
  26. Rai P, Jo JN, Lee IH, Yu YT (2010) Fabrication of 3D rotor-like ZnO nanostructure from 1D ZnO nanorods and their morphology dependent photoluminescence property. J Solid State Sci 12:1703–1710. doi:org/10.1016/j.solidstatesciences.2010.07.009. CrossRefGoogle Scholar
  27. Sridhar K, Bruna M, Mariani E (2000) Synthesis of ZnO with and without microwaves. Mater Res Bull 35:1843–1847. doi:org/10.1016/S0025-5408(00)00385-8 CrossRefGoogle Scholar
  28. Suslick KS, Gawienowski JJ, Schubert PF, Wang HH (1983) Effects of high intensity ultrasound on inorganic solids. J Phys Chem 87:2299–2301. doi:10.1016/0041-624X(87)90013-8 CrossRefGoogle Scholar
  29. Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin HS (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42:1640–1648. doi:org/10.1016/j.materresbull.2006.11.035 CrossRefGoogle Scholar
  30. Wang J, Cao J, Fang B, Lu P, Deng S, Wang H (2005) Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids. Mater Lett 59:1405–1408. doi:org/10.1016/j.matlet.2004.11.062 CrossRefGoogle Scholar
  31. Wang L, Chang LX, Zhao B, Yuan ZY, Shao GS, Zheng WJ (2008) Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminiscent properties of ZnO nanostructures constructed in ionic liquids. Inorg Chem 47:1443–1452. doi:10.1021/ic701094a CrossRefGoogle Scholar
  32. Yan HQ, He RR, Pham J, Yang PD (2003) Morphogenesis of one-dimensional ZnO nano- and microcrystals. Adv Mater 15:402–405. doi:10.1002/adma.200390091 CrossRefGoogle Scholar
  33. Yassıtepe E, Yatmaz HC, Öztürk C, Öztürk K, Duran C (2008) Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions. J Photochem Photobiol A Chem 198:1–6. doi:org/10.1016/j.jphotochem.2008.02.007 CrossRefGoogle Scholar
  34. Yavari I, Kowsari E (2007) Ionic liquids as novel and recyclable reaction media for N-alkylation of amino-9, 10-anthraquinones by trialkyl phosphites. Tetrahedron Lett 48:3753–3756. doi:10.1016/j.tetlet.2007.03.077 CrossRefGoogle Scholar
  35. Yavari I, Kowsari E (2008) Task-specific basic ionic liquid: a reusable and green catalyst for one-pot synthesis of highly functionalized pyrroles in aqueous media. Synlett 897–899. doi:10.1055/s-2008-1042912
  36. Yavari I, Kowsari E (2009) Efficient and green synthesis of tetrasubstituted pyrroles promoted by task-specific basic ionic liquids as catalyst in aqueous media. Mol Divers 13:519–528. doi:10.1007/s11030-009-9146-8 CrossRefGoogle Scholar
  37. Yavari I, Mahjoub AR, Kowsari E, Movahedi M (2009) Synthesis of ZnO nanostructures with controlled morphology and size in ionic liquids. J Nanopart Res 11:861–868. doi:10.1007/s11051-008-9485-x CrossRefGoogle Scholar
  38. Zhang H, Ma XY, Xu J, Niu JJ, Yang DR (2003) Arrays of ZnO nanowires fabricated by a simple chemical solution route. Nanotechnology 14:423–426. doi:10.1088/0957-4484/14/4/303 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryAmirkabir University of TechnologyTehranIran

Personalised recommendations