Journal of Nanoparticle Research

, Volume 13, Issue 8, pp 3327–3334 | Cite as

Microwave-assisted synthesis, characterization and ammonia sensing properties of polymer-capped star-shaped zinc oxide nanostructures

  • T. Krishnakumar
  • R. Jayaprakash
  • D. Sathya Raj
  • N. Pinna
  • V. N. Singh
  • A. R. Phani
  • G. Neri
Research paper

Abstract

Zinc oxide nanostructures were prepared by microwave-irradiation technique in the presence of polyvinyl pyrrolidone as a shape modifier. The synthesized nanostructures were analyzed using scanning and transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, and Fourier transform infrared spectroscopy (FT-IR). Characterization techniques revealed the formation of crystalline ZnO with a star-like shaped morphology, having the crystal structure of wurtzite. The microwave irradiated samples were further investigated to exploit their electrical and sensing properties. The good sensitivity and relatively short response and recovery times of chemoresistive sensors based on star-like ZnO thick films in the monitoring of low concentration of ammonia gas in air were related to the peculiar nanostructure of the sensing layer.

Keywords

Microwave synthesis Zinc oxide Semiconductor Ammonia sensor Synthesis Sensors 

References

  1. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 5:143–167CrossRefGoogle Scholar
  2. Baruwati B, Kumar DK, Manorama SV (2006) Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH. Sens Actuators B 119:676–682CrossRefGoogle Scholar
  3. Cho S, Ho Jung S, Hong Lee K (2008) Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C 112:12769–12776CrossRefGoogle Scholar
  4. Clavel G, Willinger M-G, Zitoun D, Pinna N (2007) Solvent dependent shape and magnetic properties of doped ZnO nanostructures. Adv Funct Mater 17:3159–3169CrossRefGoogle Scholar
  5. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40CrossRefGoogle Scholar
  6. Deb B, Desai S, Sumanasekera GU, Sunkara MK (2007) Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films. Nanotechnology 18:285501CrossRefGoogle Scholar
  7. Dutta S, Jackson HE, Boyd JT, Hickernell FS, Davis RL (1981) Scatter loss reduction in ZnO optical waveguides by laser annealing. Appl Phys Lett 39:206–208CrossRefGoogle Scholar
  8. Eilers H, Tissue BM (1995) Materials letters, synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with cw-CO2 laser heating. Mater Lett 24:261–265CrossRefGoogle Scholar
  9. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188CrossRefGoogle Scholar
  10. Health and Safety Executive (1993) Guidance Note EH40/93, Occupational Exposure Limits 1993. HMSO, LondonGoogle Scholar
  11. Hsin Lu C, Hsien Yeh C (1997) Emulsion precipitation of submicron zinc oxide powder. Mater Lett 33:129–132CrossRefGoogle Scholar
  12. Hyun Seo M, Yuasa M, Kida T, Soo Huh J, Shimanoe K, Yamazoe N (2009) Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sens Actuators B 137(2009):513–520Google Scholar
  13. Iwasaki M, Inubushi Y, Ito S (1997) New route to prepare ultrafine ZnO particles and its reaction mechanism. J Mater Sci Lett 16:1503–1505CrossRefGoogle Scholar
  14. Jezequel D, Guenot J, Jouini N, Fievet F (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10:77–83CrossRefGoogle Scholar
  15. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39CrossRefGoogle Scholar
  16. Krishnakumar T, Pinna N, Kumari KP, Perumal K, Jayaprakash R (2008) Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater Lett 62:3437–3440CrossRefGoogle Scholar
  17. Krishnakumar T, Jayaprakash R, Pinna N, Singh VN, Mehta BR, Phani AR (2009a) Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures. Mater Lett 63:242–245CrossRefGoogle Scholar
  18. Krishnakumar T, Jayaprakash R, Pinna N, Donato N, Bonavita A, Micali G, Neri G (2009b) CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sens Actuators B 143:198–204CrossRefGoogle Scholar
  19. Lauf RJ, Bond WD (1984) Fabrication of high field zinc oxide varistors by sol–gel processing. Am Ceram Soc Bull 63:278–282Google Scholar
  20. Lee JH (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B 140:319–336CrossRefGoogle Scholar
  21. Lou XW, Archer LA, Yang ZC (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRefGoogle Scholar
  22. Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D Appl Phys 39:R387CrossRefGoogle Scholar
  23. Luo L, Zhang Y, Mao SS, Lin L (2006) Fabrication and characterization of ZnO nanowires based UV photodiodes. Sens Actuators A 127:201–206CrossRefGoogle Scholar
  24. Milosevic O, Uskokovic D (1993) Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis. Mater Sci Eng A 168:249–252CrossRefGoogle Scholar
  25. Minami T, Yamamoto T, Miyata T (2000) Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering. Thin Solid Films 366:63–68CrossRefGoogle Scholar
  26. Nanto H, Minami T, Takata S (1986) Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J Appl Phys 60:482–484CrossRefGoogle Scholar
  27. Neri G, Micali G, Bonavita A, Ipsale S, Rizzo G, Niederberger M, Pinna N (2008) Tungsten oxide nanowires-based ammonia gas sensors. Sens Lett 6:590–595CrossRefGoogle Scholar
  28. Nishizawa H, Yuasa K (1998) Preparation of highly oriented ZnO thin film under hydrothermal conditions. J Mater Sci Lett 17:985–987CrossRefGoogle Scholar
  29. Rout CS, Hegde M, Govindaraj A, Rao CNR (2007) Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18:205504CrossRefGoogle Scholar
  30. Sberveglieri G, Groppelli S, Nelli P, Tintinelli A, Giunta G (1995) A novel method for the preparation of NH3 sensors based on ZnO-In thin films. Sens Actuators B 24:588–590CrossRefGoogle Scholar
  31. Sharma P, Gupta A, Owens F, Inoue A, Rao KV (2004) Room temperature spintronic material—Mn-doped ZnO revisited. J Magn Magn Mater 282:115–121CrossRefGoogle Scholar
  32. Timmer B, Olthuis W, Berg A (2005) Ammonia sensors and their applications—a review. Sens Actuators B 107:666–677CrossRefGoogle Scholar
  33. Uekawa N, Iahii S, Kojima T, Kakegawa K (2007) Formation of porous spherical aggregated structure of ZnO nanoparticles by low-temperature heating of Zn(OH)2 in diol solution. Mater Lett 61:1729–1734CrossRefGoogle Scholar
  34. Vaezi MR, Sadrnezhaad SK (2007) Nanopowder synthesis of zinc oxide via solochemical processing. Mater Des 28:515–519CrossRefGoogle Scholar
  35. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829CrossRefGoogle Scholar
  36. Wang C, Shen E, Wang E, Gao L, Kang Z, Tian C, Lan Y, Zhang C (2005) Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Mater Lett 59:2867–2871CrossRefGoogle Scholar
  37. Wei Wang W, Jie Zhu Y (2004) Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg Chem Commun 7:1003–1005CrossRefGoogle Scholar
  38. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan Y (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Q Adv Mater 15:353–389CrossRefGoogle Scholar
  39. Xu J, Chen Y, Chen D, Shen J (2006) Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sens Actuators B Chem 113:526–531CrossRefGoogle Scholar
  40. Yadav BC, Srivastava R, Dwivedi CD, Pramanik P (2008) Moisture sensor based on ZnO nanomaterial synthesized through oxalate route. Sens Actuators B Chem 131:216–222CrossRefGoogle Scholar
  41. Yamazoe N, Shimanoe K (2008) Roles of shape, size of component crystals in semiconductor gas sensors: I. Response to oxygen. J Electrochem Soc 155:J85–J92CrossRefGoogle Scholar
  42. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7:63CrossRefGoogle Scholar
  43. Yi G-C, Wang C, Park WI (2005) ZnO nanorods: synthesis characterization and applications. Semicond Sci Technol 20:S22CrossRefGoogle Scholar
  44. Zhang H, Wu J, Zhai C, Du N, Ma X, Yang D (2007a) From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties. Nanotechnology 18:455604CrossRefGoogle Scholar
  45. Zhang H, Feng J, Wang J, Zhang M (2007b) Preparation of ZnO nanorods through wet chemical method. Mater Lett 61:5202–5205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • T. Krishnakumar
    • 1
  • R. Jayaprakash
    • 2
  • D. Sathya Raj
    • 2
  • N. Pinna
    • 3
  • V. N. Singh
    • 4
  • A. R. Phani
    • 5
  • G. Neri
    • 6
  1. 1.Nanotechnology Laboratory, Department of PhysicsVMKV Engineering College, Vinayaka Mission UniversitySalemIndia
  2. 2.Nanotechnology Laboratory, Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia
  3. 3.Department of ChemistryCICECO, University of AveiroAveiroPortugal
  4. 4.Thin Film Laboratory, Department of PhysicsIndian Institute of Technology, Delhi, Hauz KhasNew DelhiIndia
  5. 5.Nano-RAM TechnologiesBangaloreIndia
  6. 6.Department of Industrial Chemistry and Materials EngineeringUniversity of MessinaMessinaItaly

Personalised recommendations