Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 8, pp 3259–3265 | Cite as

Highlighting the mechanisms of the titanate nanotubes to titanate nanoribbons transformation

  • Bartolomeu C. VianaEmail author
  • Odair P. Ferreira
  • Antonio G. Souza Filho
  • Angel A. Hidalgo
  • Josue Mendes Filho
  • Oswaldo L. Alves
Research paper

Abstract

Titanate nanorods, nanoribbons, and nanofibers synthesized by hydrothermal treatment are being investigated by several groups. Similar to titanate nanotubes, with average diameter of 9 nm, there is a strong controversy regarding the composition and microscopic formation mechanism of these non-hollow nanostructures (nanoribbons). In this article, we report the synthesis and characterization of the titanate nanostructures by exploiting some aspects that were not exploited so far. By using X-ray diffraction, FT-infrared and Raman spectroscopies and electron microscopy, we have studied the intermediate structure and morphology between nanotubes and the non-hollow nanostructures. Our findings give further evidence that the transformation of nanotubes into non-hollow nanostructures is induced by a sequence of both oriented attachment and Ostwald rippening cooperative mechanisms.

Keywords

Titanate nanostructures Vibrational spectroscopies X-ray diffraction Electron microscopy One-dimensional nanostructures 

Notes

Acknowledgments

Financial support from the Brazilian funding agencies CNPq, CAPES, FUNCAP, FAPEPI and FAPESP is gratefully acknowledged. The authors are indebted to Dr. Eduardo Padrón Hernández (UFPE, Brazil) for his assistance with the TEM images and to CETENE-Brazil. This is a contribution from Institute of Science, Technology and Innovation on Functional Complex Materials (Inomat) and INCT NanoBioSimes. BCV and AAH acknowledge CASADINHO program (CNPq 620238/2008–9). AGSF and OLA acknowledge PROCAD program (CAPES 068/2007) for partial support. AGSF acknowledge CNPq grant 306335/2007–7.

References

  1. Bavykin DV, Walsh FC (2009) Elongated titanate nanostructures and their applications. Eur J Inorg Chem 8:977–997CrossRefGoogle Scholar
  2. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14(22):3370–3377CrossRefGoogle Scholar
  3. Cao J, Choi J, Musfeldt JL, Lutta S, Whittingham MS (2004) Effect of sheet distance on the optical properties of vanadate nanotubes. Chem Mater 16(4):731–736CrossRefGoogle Scholar
  4. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  5. Chen Q, Du GH, Zhang S, Peng LM (2002) The structure of trititanate nanotubes. Acta Crystallogr B 58:587–593CrossRefGoogle Scholar
  6. Ferreira OP, Souza Filho AG, Mendes J, Alves OL (2006) Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. J Braz Chem Soc 17(2):393–402CrossRefGoogle Scholar
  7. Gao T, Fjellvag H, Norby P (2009) Crystal structures of titanate nanotubes: a Raman scattering study. Inorg Chem 48(4):1423–1432CrossRefGoogle Scholar
  8. Horvath E, Kukovecz A, Konya Z, Kiricsi I (2007) Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem Mater 19(4):927–931CrossRefGoogle Scholar
  9. Huang JQ, Cao YG, Huang QF, He H, Liu Y, Guo W, Hong MC (2009) High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires. Cryst Growth Des 9(8):3632–3637. doi: 10.1021/cg900381h CrossRefGoogle Scholar
  10. Idakiev V, Yuan ZY, Tabakova T, Su BL (2005) Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water–gas shift reaction. Appl Catal A 281(1-2):149–155CrossRefGoogle Scholar
  11. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11(15):1307–1311CrossRefGoogle Scholar
  12. Kolen’ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Van Tendeloo G, Yoshimura M (2006) Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J Phys Chem B 110(9):4030–4038CrossRefGoogle Scholar
  13. Li JR, Tang ZL, Zhang ZT (2005) H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochem Commun 7(1):62–67CrossRefGoogle Scholar
  14. Liu XY, Coville NJ (2005) A Raman study of titanate nanotubes. S Afr J Chem 58:110–115Google Scholar
  15. Ma RZ, Fukuda K, Sasaki T, Osada M, Bando Y (2005) Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. J Phys Chem B 109(13):6210–6214CrossRefGoogle Scholar
  16. Meng XD, Wang DZ, Liu JH, Zhang SY (2004) Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites. Mater Res Bull 39(14–15):2163–2170CrossRefGoogle Scholar
  17. Menzel R, Peiro AM, Durrant JR, Shaffer MSP (2006) Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem Mater 18(25):6059–6068CrossRefGoogle Scholar
  18. Morgan DL, Zhu HY, Frost RL, Waclawik ER (2008) Determination of a morphological phase diagram of titania/titanate nanostructures from alkaline hydrothermal treatment of Degussa P25. Chem Mater 20(12):3800–3802CrossRefGoogle Scholar
  19. Morgan DL, Liu HW, Frost RL, Waclawik ER (2010) Implications of precursor chemistry on the alkaline hydrothermal synthesis of titania/titanate nanostructures. J Phys Chem C 114(1):101–110CrossRefGoogle Scholar
  20. Peng YC, Kansal SK, Deng WL (2009) Studies on transformation of titanate nanotubes into nanoribbons. Mater Lett 63(30):2615–2618. doi: 10.1016/j.matlet.2009.09.015 CrossRefGoogle Scholar
  21. Remskar M (2004) Inorganic nanotubes. Adv Mater 16(17):1497–1504CrossRefGoogle Scholar
  22. Tenne R (2006) Inorganic nanotubes and fullerene-like nanoparticles. Nat Nanotechnol 1(2):103–111CrossRefGoogle Scholar
  23. Viana BC, Ferreira OP, Souza Filho AG, Rodrigues CM, Moraes SG, Mendes J, Alves OL (2009a) Decorating titanate nanotubes with CeO2 nanoparticles. J Phys Chem C 113(47):20234–20239CrossRefGoogle Scholar
  24. Viana BC, Ferreira OP, Souza Filho AG, Mendes Filho J, Alves OL (2009b) Structural, morphological and vibrational properties of titanate nanotubes and nanoribbons. J Braz Chem Soc 20:167–175CrossRefGoogle Scholar
  25. Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365(5–6):427–431CrossRefGoogle Scholar
  26. Wei MD, Qi ZM, Ichihara M, Honma I, Zhou HS (2007) Synthesis of one-dimensional sodium titanate nanostructures. J Nanosci Nanotechnol 7(3):1065–1068CrossRefGoogle Scholar
  27. Wu D, Liu J, Zhao XN, Li AD, Chen YF, Ming NB (2006) Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem Mater 18(2):547–553CrossRefGoogle Scholar
  28. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82(2):281–283CrossRefGoogle Scholar
  29. Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A 241 (1–3):173–183Google Scholar
  30. Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ (2003) Formation mechanism of H2Ti3O7 nanotubes. Phys Rev Lett 91(25):2561031–2561034CrossRefGoogle Scholar
  31. Zhang S, Chen Q, Peng LM (2005) Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Phys Rev B 71(1):014104–014114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bartolomeu C. Viana
    • 1
    Email author
  • Odair P. Ferreira
    • 2
  • Antonio G. Souza Filho
    • 3
  • Angel A. Hidalgo
    • 1
  • Josue Mendes Filho
    • 3
  • Oswaldo L. Alves
    • 2
  1. 1.Departamento de FísicaUniversidade Federal do Piauí—UFPITeresinaBrazil
  2. 2.LQES—Laboratório de Química do Estado Sólido, Instituto de QuímicaUniversidade Estadual de Campinas—UNICAMPCampinasBrazil
  3. 3.Departamento de FísicaUniversidade Federal do Ceará—UFCFortalezaBrazil

Personalised recommendations