Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2351–2360

Influence of NH3 flow rate on pyridine-like N content and NO electrocatalytic oxidation of N-doped multiwalled carbon nanotubes

  • Wei-Xin Lv
  • Rui Zhang
  • Ting-Liang Xia
  • Hong-Mei Bi
  • Ke-Ying Shi
Research Paper


Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) have been prepared by pyrolysis of pyridine and iron phthalocyanine over an iron catalyst at 850 °C at various ammonia gas (NH3) flow rates. X-ray photoelectron spectroscopy results reveal that the pyridine-like nitrogen (N) content can be controlled by changing the flow rate of NH3, and that pyridine-like N plays an important role: it can increase the electrocatalytic activity and the rate of nitric oxide (NO) electrooxidation and decrease the activation energy of NO electrooxidation. Cyclic voltammetry results demonstrate that the N-MWCNTs sample grown with 200 mL/min NH3 flow has the maximum N content of 3.22 atomic %, and its content of pyridine-like N that is chemically active is also the highest among all the N-MWCNTs samples. Electrochemical impedance spectroscopy results indicate that two-step electron transfer process occurs at the N-MWCNT-modified electrode, and the control step is different in various potential regions. The stability of NO electrooxidation at the N-MWCNT-modified electrode is examined, and the reaction mechanism is discussed.


Carbon nanotubes N-doped Pyridine-like N Graphite-like N NO electrooxidation Synthesis 



N-doped multiwalled carbon nanotubes


Carbon nanotubes


Cyclic voltammetry


Electrochemical impedance spectroscopy


Transmission electron microscopy


X-ray photoelectron spectroscopy


Glass carbon


Single-walled carbon nanotubes

Supplementary material

11051_2010_9994_MOESM1_ESM.pdf (63 kb)
Supplementary material 1 (PDF 62 kb)


  1. Amadou J, Chizari K, Houllé M, Janowska I, Ersen O, Bégin D, Pham-Huu C (2008) N-doped carbon nanotubes for liquid-phase C=C bond hydrogenation. Catal Today 138:62–68. doi:10.1016/j.cattod.2008.06.015 CrossRefGoogle Scholar
  2. Ayala P, Gruneis A, Gemming T, Grimm D, Kramberger C, Rummeli MH, Freire FL Jr, Kuzmany H, Pfeiffer R, Barreiro A, Buchner B, Pichler T (2007) Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. J Phys Chem C 111:2879–2884. doi:10.1021/jp0658288 CrossRefGoogle Scholar
  3. Bulusheva LG, Okotrub AV, Kudashov AG, Pazhetnov EM, Boronin AI, Vyalikh DV (2007) Encapsulation of molecular nitrogen in multiwall CNx nanotubes. Phys Status Solidi B 244:4078–4081. doi:10.1002/pssb.200776151 CrossRefGoogle Scholar
  4. Bulusheva LG, Okotrub AV, Kinloch IA, Asanov IP, Kurenya AG, Kudashov AG, Chen X, Song H (2008a) Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes. Phys Status Solidi B 245:1971–1974. doi:10.1002/pssb.200879592 CrossRefGoogle Scholar
  5. Bulusheva LG, Okotrub AV, Kudashov AG, Shubin Yu V, Shlyakhova EV, Yudanov NF, Pazhetnov EM, Boronin AI, Vyalikh DV (2008b) Effect of Fe/Ni catalyst composition on nitrogen doping and field emission properties of carbon nanotubes. Carbon 46(6):864–869. doi:10.1016/j.carbon.2008.02.009 CrossRefGoogle Scholar
  6. Choi HC, Park J, Kim B (2005) Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy. J Phys Chem B 109:4333–4340. doi:10.1021/jp0453109 CrossRefGoogle Scholar
  7. Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Ruhle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1:457–460. doi:10.1021/nl015549q CrossRefGoogle Scholar
  8. Ghosh K, Kumar M, Maruyama T, Ando Y (2010) Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon 48:191–200. doi:10.1016/j.carbon.2009.09.003 CrossRefGoogle Scholar
  9. He MS, Zhou S, Zhang J, Liu ZF, Robinson C (2005) CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J Phys Chem B 109:9275–9279. doi:10.1021/jp044868d CrossRefGoogle Scholar
  10. Kan K, Xia TL, Li L, Bi HM, Fu HG, Shi KY (2009) Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide. Nanotechnology 20:185502. doi:10.1088/0957-4484/20/18/185502 CrossRefGoogle Scholar
  11. Kim SY, Lee JY, Na CW, Park J, Seo K, Kim B (2005) N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. Chem Phys Lett 413:300–305. doi:10.1016/j.cplett.2005.07.093 CrossRefGoogle Scholar
  12. Lee YT, Kim NS, Bae SY, Park J, Yu SC, Ryu H, Lee HJ (2003) Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100°C. J Phys Chem B 107:12958–12963. doi:10.1021/jp0274536 CrossRefGoogle Scholar
  13. Lee SU, Belosludov RV, Mizuseki H, Kawazoe Y (2009) Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes. Small 5:1769–1775. doi:10.1002/smll.200801938 CrossRefGoogle Scholar
  14. Lim SH, Li RJ, Ji W, Lin JY (2007) Effects of nitrogenation on single-walled carbon nanotubes within density functional theory. Phys Rev B 76:195406. doi:10.1103/PhysRevB.76.195406 CrossRefGoogle Scholar
  15. Liu J, Webster S, Carroll DL (2005) Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. J Phys Chem B 109:15769–15774. doi:10.1021/jp050123b CrossRefGoogle Scholar
  16. Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437. doi:10.1016/j.carbon.2005.11.027 CrossRefGoogle Scholar
  17. Nath M, Satishkumar B, Govindaraj A, Vinod CP, Rao CNR (2000) Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem Phys Lett 322:333–340. doi:10.1016/S0009-2614(00)00437-1 CrossRefGoogle Scholar
  18. Nevidomskyy AH, Csanyi G, Payne MC (2003) Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys Rev Lett 91(10):105502. doi:10.1103/PhysRevLett.91.105502 CrossRefGoogle Scholar
  19. Omanovic S, Roscoe SG (2000) Interfacial behavior of β-lactoglobulin at a stainless steel surface: an electrochemical impedance spectroscopy study. J Colloid Interface Sci 227:452–460. doi:10.1006/jcis.2000.6913 CrossRefGoogle Scholar
  20. Tao XY, Zhang XB, Sun FY, Cheng JP, Liu F, Luo ZQ (2007) Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1−xMoO4 catalyst. Diam Relat Mater 16:425–430. doi:10.1016/j.diamond.2006.08.019 CrossRefGoogle Scholar
  21. Terrones M, Terrones H, Grobert N, Hsu WK, Zhu YQ, Hare JP et al (1999) Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl Phys Lett 75:3932–3934. doi:10.1063/1.125498 CrossRefGoogle Scholar
  22. Villalpando-Páez F, Romero AH, Muñoz-Sandoval E, Martínez LM, Terrones H, Terrones M (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 386:137–143. doi:10.1016/j.cplett.2004.01.052 CrossRefGoogle Scholar
  23. Xiao K, Liu Y, Hu P, Yu G, Sun Y, Zhu D (2005) n-Type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube. J Am Chem Soc 127:8614–8617. doi:10.1021/ja042554y CrossRefGoogle Scholar
  24. Yang QH, Hou PX, Unno M, Yamauchi S, Saito R, Kyotani T (2005) Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls. Nano Lett 5:2465–2469. doi:10.1021/nl051779j CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Wei-Xin Lv
    • 1
    • 2
  • Rui Zhang
    • 1
    • 2
  • Ting-Liang Xia
    • 1
    • 2
  • Hong-Mei Bi
    • 1
    • 2
  • Ke-Ying Shi
    • 1
    • 2
  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of EducationHeilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.Key Laboratory of Physical Chemistry, School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations