Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 479–490 | Cite as

Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

  • J. SanthanalakshmiEmail author
  • P. Venkatesan
Brief Communication


Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

Graphical Abstract


Monometallic nanoparticles Bimetallic nanoparticles Reduction of Eosin-Y NADH oxidation Catalysis CTAB-capping agent Temperature-controlled nanoparticle synthesis 


  1. Abe M, Kubo A, Yamamoto S, Hatoh Y, Murai M, Hattori Y, Makabe H, Nishioka T, Miyoshi H (2008) Dynamic function of the spacer region of acetogenins in the inhibition of bovine mitochondrial NADH-ubiquinone oxidoreductase (complex I). Biochemistry 47:6260–6266CrossRefGoogle Scholar
  2. Barker CD, Reda T, Hirst J (2007) Reevaluating the relationship between EPR spectra and enzyme structure for the iron–sulfur clusters in NADH:quinone oxidoreductase. Biochemistry 46:3454–3464CrossRefGoogle Scholar
  3. Bradley JS, Hill EW, Behal S, Klein C, Chaudret B, Duteil A (1992) Chem Mater 4:1234–1239CrossRefGoogle Scholar
  4. Bradshaw AM, Pritchard J (1970) Infrared spectra of carbon monoxide chemisorbed on metal films: a comparative study of copper, silver, gold, iron, cobalt and nickel. Proc Roy Soc Lond Ser A 316:169–183CrossRefGoogle Scholar
  5. Braun PV, Ge David Z, Cahill G (2004) J Phys Chem B 108:18870–18875CrossRefGoogle Scholar
  6. Caruso F (2001) Gold−titania core−shell nanoparticles by polyelectrolyte complexation with a titania precursor. Adv Mater 13(11):3833–3836Google Scholar
  7. Catterall WA, Hollis DP, Walter CF (1969) Nuclear magnetic resonance study of the conformation of nicotinamide–adenine dinucleotide and reduced nicotinamide–adenine dinucleotide in solution. Biochem 8:4032–4036CrossRefGoogle Scholar
  8. Damle C, Kumar A, Sastry M (2002) Synthesis of Ag/Pd nanoparticles and their low-temperature alloying within thermally evaporated fatty acid films. J Phys Chem B 106:297–302CrossRefGoogle Scholar
  9. Dolphin D, Poulson R, Avramovic O (1987) Pyridine nucleotide coenzymes. Wiley, New YorkGoogle Scholar
  10. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17:4630–4635CrossRefGoogle Scholar
  11. Edwards JK, Selsone BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) . Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. J Catal 236:69–79CrossRefGoogle Scholar
  12. Fukuzumi S, Inada O, Suenobu T (2003) Mechanisms of electron-transfer oxidation of NADH analogues and the chemiluminescence. Detection of the keto and enol radical cations. J Am Chem Soc 125:4808–4816CrossRefGoogle Scholar
  13. Gao J, Fu J, Lin C, Lin J, Han Y, Yu X, Pan C (2004) Formation and photoluminescence of silver nanoparticles stabilized by a two-armed polymer with a crown ether core. Langmuir 20:9775–9779CrossRefGoogle Scholar
  14. Jeffrey J (1980) Dehydrogenases requiring nicotinamide coenzymes. Birkhgoldser Verlag, BaselGoogle Scholar
  15. Kulikova VS (2005) NADH oxidase activity of gold nanoparticles in aqueous solution kinetics and catalysis. Kinet Catal 46(3):373–375CrossRefGoogle Scholar
  16. Laura P, Alberto V, Claudio C, Paolo S (2007) Effect of gold addition on Pt and Pd catalysts in liquid phase oxidations. Topics Catal 44:319–324CrossRefGoogle Scholar
  17. Moser JE, Gratzel M (1984) Photosensitized electron injection in colloidal semiconductors. J Am Chem Soc 106:6557–6564CrossRefGoogle Scholar
  18. Narayanan R, Lipert RJ, Porter MD (2008) Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Anal Chem 80(6):2265–2271CrossRefGoogle Scholar
  19. Pelet S, Gratzel M, Moser JE (2003) Femtosecond dynamics of interfacial and intermolecular electron transfer at eosin-sensitized metal oxide nanoparticles. J Phys Chem. B 107:3215–3224CrossRefGoogle Scholar
  20. Regan MR, Banerjee IA (2006) Preparation of Au–Pd bimetallic nanoparticles in porous germania nanospheres: a study of their morphology and catalytic activity. Scripta Mater 54:909–914CrossRefGoogle Scholar
  21. Rodrıguez-Gonzalez B, Burrows A, Watanabe M, Kiely CJ, Liz Marzan LM (2005) Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J Mater Chem 15:1755–1759CrossRefGoogle Scholar
  22. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts. Chem Rev 102:3757–3778CrossRefGoogle Scholar
  23. Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. 105:9266–9272CrossRefGoogle Scholar
  24. Scherbak N, Strid A, Eriksson LA (2005) Non-enzymatic oxidation of NADH by quinones. Chem Phys Lett 414:243–247CrossRefGoogle Scholar
  25. Sui ZM, Chen X, Wang LY, Xu LM, Zhuang WC, Chai YC, Yang C (2006) Capping effect of CTAB on positively charged Ag nanoparticles. J Phys E 33:308–314CrossRefGoogle Scholar
  26. Sun SG, Cai WB, Wan LJ, Osawa M (1999) Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy. J Phys Chem B 103:2460–2466CrossRefGoogle Scholar
  27. Tan H, Zhan T, Fan WY (2006) A simple route to water-soluble size-tunable monodispersed Pd nanoparticles from light decomposition of Pd(PPh3)4. Chem Phys Lett 428(20):352–355CrossRefGoogle Scholar
  28. Tsukiji S, Pattnaik SB, Suga H (2004) Reduction of an aldehyde by a NADH/Zn2+- dependent redox active ribozyme. J Am Chem Soc 126:5044–5045CrossRefGoogle Scholar
  29. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375CrossRefGoogle Scholar
  30. Voet D, Voet JG (2004) Biochemistry, Chap. 16, 3rd edn. Wiley, HobokenGoogle Scholar
  31. Wang Y, Toshima N (1997) Preparation of Pd−Pt bimetallic colloids with controllable core/shell structures. J Phys Chem B. 101:5301–5306CrossRefGoogle Scholar
  32. Wang XS, Wang H, Coombs N, Winnik MA, Manners I (2005) Redox-induced synthesis and encapsulation of metal nanoparticles in shell-cross-linked organometallic nanotubes. J Am Chem Soc 127:8924–8925CrossRefGoogle Scholar
  33. Zheng P, Zhang W (2007) Synthesis of efficient and reusable palladium catalyst supported on pH-responsive colloid and its application to Suzuki and Heck reactions in water. J Catal 250:324–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Physical ChemistryUniversity of MadrasChennaiIndia

Personalised recommendations