Journal of Nanoparticle Research

, Volume 13, Issue 5, pp 2021–2028

Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

  • Deshpande Raghunandan
  • Bedre D. Mahesh
  • S. Basavaraja
  • S. D. Balaji
  • S. Y. Manjunath
  • A. Venkataraman
Research Paper


Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.


Silver nanoparticles Guava (Psidium guajava) leaf extract Microwave Field emission scanning electron microscopy Transmission electron microscopy Biosynthesis Nanobiotechnology 


  1. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) The use of microorganisms for the formation of metal nanoparticles and their application. Langmuir 19:3550–3553CrossRefGoogle Scholar
  2. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925CrossRefGoogle Scholar
  3. Aurel Y, Jan G, Paul VL, Thijs W, Stephan WFM, Van H, Tom AM, Beumer TA, Robert R, Wijn RR, Rene G, Heideman RG, Vinod S, Johannes S, Kanger JS (2007) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7(2):394–397CrossRefGoogle Scholar
  4. Basavaraja S, Balaji DS, Arunkumar L, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170CrossRefGoogle Scholar
  5. Begum S, Hassan SI, Siddiqui BS, Shaheen F, Ghayur MN, Gilani AH (2002) Triterpenoids from the leaf of Psidium guajava. Phytochemistry 61:399–403CrossRefGoogle Scholar
  6. Chan WCS, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  7. Chen KC, Hsieh CL, Peng CC, Hsieh-Li HM, Chiang HS, Huang KD, Peng RY (2007) Brain derived metastatic prostate cancer DU-145 cells are effectively inhibited in vitro by guava (Psidium gujava L.) leaf extracts. Nutr Cancer 58(1):93–106Google Scholar
  8. Chen-Wen L, Yann H, Jong-Kai H, Ming Y, Tsai-Hua C, Yu-Shen L, Si-Han W, Szu-Chun H, Hon-Man L, Chung-Yuan M, Chung-Shi Y, Dong-Ming H, Yao-Chang C (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154CrossRefGoogle Scholar
  9. Cristian S, Alan T, Johnson J, Gelperin A (2005) DNA-decorated carbon nanotubes for chemical sensing. Nano Lett 5(9):1774–1778CrossRefGoogle Scholar
  10. Deitch EA, Marrino AA, Lakanok V, Al-bright JA (1987) Silver nylon cloth: in vitro and in vivo evaluation of antimicrobial activity. J Trauma 27(3):301–304CrossRefGoogle Scholar
  11. El-Sayed IH, Huang XH, El-Sayed MA MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834CrossRefGoogle Scholar
  12. Fendler JH (1996) Self-assembled nanostructured materials. Chem Mater 8:1616–1624CrossRefGoogle Scholar
  13. Gabriel C, Gabriel S, Grant EH, Halstead BSJ (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–223CrossRefGoogle Scholar
  14. Gardea-Torresdey JL, Gomez E, Peralta-Videa R, Parsons JG, Troiani H, Yacaman MJ MJ (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361CrossRefGoogle Scholar
  15. Gedye RN, Smith FE, Westaway KC (1991) Microwaves in organic and organometallic synthesis. J Microw Power Electromag Energy 26:3–17Google Scholar
  16. Huang H, Yang X (2004) Suspension of silver oxide nanoparticles in chitosan solution and its antibacterial activity in cotton fabrics. Carbohydr Res 339:2627–2631CrossRefGoogle Scholar
  17. Klaus-Joerger T, Joerger R, Olsson E, Granqvist C (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20CrossRefGoogle Scholar
  18. Krasovskii VI, Karavanskii VA (2008) Surface plasmon resonance of metal nanoparticles for interface characterization. Opt Mem Neural Netw 17(1):8–14Google Scholar
  19. Liang Q, Qian H, Yao W (2005) Identification of flavonoids and their glycosides by high-performance liquid chromatography with electrospray ionization mass spectrometry and with diode array ultraviolet detection. Eur J Mass Spectrom 11:93–101CrossRefGoogle Scholar
  20. Miean KH, Suhaila M (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49(6):3106–3112CrossRefGoogle Scholar
  21. Mingos DMP, Whittaker AG (1997) Microwave dielectric heating effects. In: Eldik RV, Hubbard CD (eds) Chemical synthesis in chemistry under extreme or non-classical conditions. Wiley, New York, pp 479–514Google Scholar
  22. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  23. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  24. Rongchao J (2005) Noble metal nanocrystals: synthesis, optical properties, and biological applications.
  25. Sastry M, Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B 28:313–318CrossRefGoogle Scholar
  26. Sastry M, Shankar SS, Akhilesh R, Absar A (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefGoogle Scholar
  27. Scott DB, Timothy JB, Thomas JH (2003) Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 3(7):901–905CrossRefGoogle Scholar
  28. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  29. Shikuo L, Yuhua S, Anjian X, Xuerong Y, Lingguang Q, Li Z, Qingfeng Z (2007) Green synthesis of silver nanoparticles using Capsicum annuum. L. extract. Green Chem 9:852–858CrossRefGoogle Scholar
  30. Stephan L, Mostafa A, El-Sayed J (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  31. Suntornsuk L, Gritsanapun W, Nilkamhank S, Paochom A (2002) Quantitation of vitamin C content in herbal juice using direct titration. J Pharm Biomed Anal 28(5):849–855CrossRefGoogle Scholar
  32. Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mat 6:312–318CrossRefGoogle Scholar
  33. Wilson CW, Shaw PE, Campbell CW (2006) Determination of organic acids and sugars in guava (Psidium guajava L.) cultivars by high-performance liquid chromatography. J Sci Food Agric 33:777–780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Deshpande Raghunandan
    • 1
  • Bedre D. Mahesh
    • 2
  • S. Basavaraja
    • 3
  • S. D. Balaji
    • 2
  • S. Y. Manjunath
    • 4
  • A. Venkataraman
    • 2
  1. 1.H.K.E.S’s College of PharmacyGulbargaIndia
  2. 2.Materials Chemistry Laboratory, Department of Material ScienceGulbarga UniversityGulbargaIndia
  3. 3.Veeco-India Nanotechnology LaboratoryJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  4. 4.Sri Krupa, Institute of Pharmaceutical ScienceSiddipeth, MedakIndia

Personalised recommendations