Skip to main content
Log in

Synthesis and photo physical properties of Au @ Ag (core @ shell) nanoparticles disperse in poly vinyl alcohol matrix

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Synthesis of core @ shell (Au @ Ag) nanoparticle with varying silver composition has been carried out in aqueous poly vinyl alcohol (PVA) matrix. Core gold nanoparticle (~15 nm) has been synthesized through seed-mediated growth process. Synthesis of silver shell with increasing thickness (~1–5 nm) has been done by reducing Ag+ over the gold sol in the presence of mild reducing ascorbic acid. Characterization of Au @ Ag nanoparticles has been done by UV–Vis, High resolution transmission electron microscope (HRTEM) and energy dispersive X-ray (EDX) spectroscopic study. The blue shift of surface plasmon resonance (SPR) band with increasing mole fraction of silver has been interpreted due to dampening of core, i.e. Au SPR by Ag. The dependence of nonlinear optical response of spherical core @ shell nanoparticles has been investigated as a function of relative composition of each metal. Simulation of SPR extinction spectra based on quasi-static theory is done. A comparison of our experimental and the simulated extinction spectra using quasi-static theory of nanoshell suggests that our synthesized bimetallic particles have core @ shell structure rather than bimetallic alloy particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aden AL, Kerker M (1951) Scattering of electromagnetic waves from two concentric spheres. J Appl Phys 22:1242–1246

    Article  Google Scholar 

  • Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832

    Article  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorbance and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Burda C, Chen X, Narayana R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025. doi:10.1021/cr030063a

    Article  CAS  Google Scholar 

  • Chen DH, Chen CJ (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562. doi:10.1039/b110749f

    Article  CAS  Google Scholar 

  • Chiu HK, Chiang IC, Chen DH (2009) Synthesis of NiAu alloy and core–shell nanoparticles in water-in-oil microemulsions. J Nanopart Res 11:1137–1144. doi: 10.1007/s11051-008-9506-9

    Google Scholar 

  • Douglas F, Yañez R, Ros J, Marín S, Escosura-Mun˜iz ADL, Alegret S, Merkoci A (2008) Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization. J Nanopart Res 10:97–106. doi:10.1007/s11051-008-9374-3

    Article  CAS  Google Scholar 

  • Han SW, Kim Y, Kim K (1998) Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J Colloid Interface Sci 208:272–278. doi:10.1006/jcis.1998.5812

    Article  CAS  Google Scholar 

  • Harada M, Asakura K, Toshima N (1993) Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride. J Phys Chem 97:5103–5114. doi:10.1021/j100121a042

    Article  CAS  Google Scholar 

  • Henglein A, Brancewicz C (1997) Absorption spectra and reactions of colloidal bimetallic nanoparticles containing mercury. Chem Mater 9:2164–2167. doi:10.1021/cm970258x

    Article  CAS  Google Scholar 

  • Hodak JH, Henglein A, Giersig M, Harland GV (2000) Laser-induced inter-diffusion in auag core−shell nanoparticles. J Phys Chem B 104:11708–11718. doi:10.1021/jp002438r

    Google Scholar 

  • Kerker M (1969) The scattering of light and other eloctromagnetic radiation. Academic Press, New York

    Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  • Link S, Wang ZL, EI-Sayed MA (1999) Alloy formation of gold−silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533. doi:10.1021/jp990387w

    Article  CAS  Google Scholar 

  • Mallik K, Mandal M, Pradhan N, Pal T (2001) Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of “core−shell” type structures. Nano Lett 1:319–322. doi:10.1021/nl0100264

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallo¨sungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. doi:10.1021/la9502711

    Article  CAS  Google Scholar 

  • Mulvaney P, Giersig M, Henglein A (1993) Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles. J Phys Chem 97:7061–7064. doi:10.1021/j100129a022

    Article  CAS  Google Scholar 

  • Nath S, Praharaj S, Panigrahi S, Ghose SK, Kundu S, Basu S, Pal T (2005) Synthesis and characterization of N,N-dimethyldodecylamine-capped Aucore- Pdshell nanoparticles in toluene. Langmuir 21:10405–10408. doi:10.1021/la051710r

    Article  CAS  Google Scholar 

  • Pal A, Shah S, Devi S (2007) Synthesis of Au, Ag and Au–Ag alloy nanoparticles in aqueous polymer solution. Colloids Surf A Physicochem Eng Asp 302:51–57. doi:10.1016/j.colsurfa.2007.01.054

    Article  CAS  Google Scholar 

  • Pande S, Ghosh SK, Paharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukada T, Pal T (2007) Synthesis of normal and inverted gold−silver core−shell architectures in β-cyclodextrin and their applications in SERS. J Phys Chem C 111:10806–10813. doi:10.1021/jp0702393

    Article  CAS  Google Scholar 

  • Roy RK, Mandal SK, Pal AK (2003) Effect of interfacial alloying on the surface plasmon resonance of nanocrystalline Au–Ag multilayer thin films. Eur Phys J B 33:109–114. doi:10.1140/epjb/e2003-00147-x

    Article  CAS  Google Scholar 

  • Sarkar D (1996) Vector basis function solution of Maxwell’s equations. PhD dissertation, Rice University, Houston

  • Sarkar D, Halas NJ (1997) General vector basis function solution of Maxwell’s equations. Phys Rev E 56:1102–1112

    Article  CAS  Google Scholar 

  • Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CF II, Gezelter JD (2002) Size-dependent spontaneous alloying of Au−Ag nanoparticles. J Am Chem Soc 124:11989–11996. doi:10.1021/ja026764r

    Article  CAS  Google Scholar 

  • Sinzig J, Radtke U, Quinten M, Kreibig U (1993) Binary clusters: homogeneous alloys and nucleus-shell structures. Z Phys D 26:242–245. doi:10.1007/BF01429157

    Article  CAS  Google Scholar 

  • Srnova-Sloufova I, Vlckova B, Bastl Z, Hasslett LT (2004) Bimetallic (Ag)Au nanoparticles prepared by the seed growth method: two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth. Langmuir 20:3407–3415. doi:10.1021/la0302605

    Article  CAS  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    Google Scholar 

  • Sun S, Murry CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. doi:10.1126/science.287.5460.1989

    Article  CAS  Google Scholar 

  • Teo BK, Keating K, Kao YH (1987) Observation of plasmon frequency in the optical spectrum of Au18Ag20 cluster: the beginning of the collective phenomenon characteristics of the bulk? J Am Chem Soc 109:3494–3495. doi:10.1021/ja00245a070

    Article  CAS  Google Scholar 

  • Toshima N, Wang Y (1994) Preparation and catalysis of novel colloidal dispersions of copper/noble metal bimetallic clusters. Langmuir 10:4574–4580. doi:10.1021/la00024a031

    Article  CAS  Google Scholar 

  • Tsuji M, Matsuo R, Jiang P, Miyamae N, Ueyama D, Nishio M, Hikino S, Kumagae H, Kamarudin KSN, Tang XL (2008) Shape-dependent evolution of Au @ Ag core−shell nanocrystals by PVP-assisted N,N-dimethylformamide reduction. Cryst Growth Des 8:2528–2536. doi:10.1021/cg800162t

    Article  CAS  Google Scholar 

  • Vaidya S, Patra A, Ganguli AK (2010) Core–shell nanostructures and nanocomposites of Ag @ TiO2: effect of capping agent and shell thickness on the optical properties. J Nanopart Res. doi:10.1007/s11051-009-9663-5

  • Wang Y, Toshima N (1997) Preparation of Pd−Pt bimetallic colloids with controllable core/shell structures. J Phys Chem B 101:5301–5306. doi:10.1021/jp9704224

    Article  CAS  Google Scholar 

  • Zhu J (2005) Theoretical study of the optical absorption properties of Au–Ag bimetallic nanospheres. Physica E 27:296–301. doi:10.1016/j.physe.2004.12.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support received from CSIR, New Delhi for carrying out this research work. S. Pyne and P. Sarkar thank CSIR, New Delhi for their individual fellowship. The support rendered by the Central Research Facility at IIT Kharagpur, India for carrying out HRTEM study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyne, S., Sarkar, P., Basu, S. et al. Synthesis and photo physical properties of Au @ Ag (core @ shell) nanoparticles disperse in poly vinyl alcohol matrix. J Nanopart Res 13, 1759–1767 (2011). https://doi.org/10.1007/s11051-010-9955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9955-9

Keywords

Navigation