Journal of Nanoparticle Research

, Volume 13, Issue 5, pp 1929–1936 | Cite as

1-Hexadecylamine as both reducing agent and stabilizer to synthesize Au and Ag nanoparticles and their SERS application

Research Paper


1-Hexadecylamine (HDA)-capped Au and Ag nanoparticles (NPs) have been successfully prepared by a one-pot solution growth method. The HDA is used as both reducing agent and stabilizer in the synthetic process is favorable for investigating the capping mechanism of Au and Ag NPs’ surface. The growth process and characterization of Au and Ag NPs are determined by Ultraviolet–visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). Experimental results demonstrate that the HDA-capped Au and Ag NPs are highly crystalline and have good optical properties. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 2-thionaphthol are obtained on the Au and Ag NPs modified glass surface, respectively, indicating that the as-synthesized noble metal NPs have potentially high sensitive optical detection application.


Au Ag NPs HDA SERS Noble metal nanostructures 


  1. Alvarez-Puebla RA, Dos Santos Jr DS, Aroca RF (2004) Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 12:1251–1256CrossRefGoogle Scholar
  2. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897CrossRefGoogle Scholar
  3. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250CrossRefGoogle Scholar
  4. Chen S, Zhang X, Zhao Y, Yan J, Tan W (2009) Preparation and characterization of CdSe nanoparticles in the presence of triocytlphosphine as solvent and capping agent. Mater Lett 63:712–714CrossRefGoogle Scholar
  5. Fang Y (1998) Optical absorption of nanoscale colloidal silver: aggregate band and adsorbate-silver surface band. J Chem Phys 108:4315–4318CrossRefGoogle Scholar
  6. Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
  7. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  8. Huo ZY, Tsung CK, Huang WY, Zhang XF, Yang PD (2008) Sub-two nanometer single crystal Au nanowires. Nano Lett 8:2041–2044CrossRefGoogle Scholar
  9. Itoh M, Kakuta T, Nagaoka M, Koyama Y, Sakamoto M, Kawasaki S, Umeda N, Kurihara M (2009) Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine complexes. J Nanosci Nanotechnol 9:6655–6660CrossRefGoogle Scholar
  10. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786CrossRefGoogle Scholar
  11. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRefGoogle Scholar
  12. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  13. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192CrossRefGoogle Scholar
  14. Merican Z, Schiller TL, Hawker CJ, Fredericks PM, Blakey I (2007) Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules. Langmuir 23:10539–10545CrossRefGoogle Scholar
  15. Pastoriza-Santos I, Liz-Marzán LM (2009) N, N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688CrossRefGoogle Scholar
  16. Ren JT, Tilley RD (2007) Shape-controlled growth of platinum nanoparticles. Small 3:1508–1512CrossRefGoogle Scholar
  17. Rojluechai S, Chavadej S, Schwank JW, Meeyoo V (2007) Catalytic activity of ethylene oxidation over Au, Ag and Au–Ag catalysts: support effect. Catal Commun 8:57–64CrossRefGoogle Scholar
  18. Safin DA, Mdluli PS, Revaprasadu N, Ahmad K, Afzaal M, Helliwell M, O’Brien P, Shakirova ER, Babashkina MG, Klein A (2009) Nanoparticles and thin films of silver from complexes of derivatives of N-(Diisopropylthiophosphoryl)thioureas. Chem Mater 21:4233–4240CrossRefGoogle Scholar
  19. Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T (2009) SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem 393:1135–1141CrossRefGoogle Scholar
  20. Shen CM, Su YK, Yang HT, Yang TZ, Gao HJ (2003) Synthesis and characterization of n-octadecayl mercaptan-protected palladium nanoparticles. Chem Phys Lett 373:39–45CrossRefGoogle Scholar
  21. Shen C, Hui C, Yang T, Xiao C, Tian J, Bao L, Chen S, Ding H, Gao H (2008) Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem Mater 20:6939–6944CrossRefGoogle Scholar
  22. Wang H, Jiao X, Chen D (2008) Monodispersed Nickel nanoparticles with tunable phase and size: synthesis, characterization, and magnetic properties. J Phys Chem C 112:18793–18797Google Scholar
  23. Wang C, Yin H, Chan R, Peng S, Dai S, Sun S (2009) One-pot synthesis of oleylamine coated Au Ag alloy NPs and their catalysis for CO oxidation. Chem Mater 21:433–435CrossRefGoogle Scholar
  24. Weissenbacher N, Gobel R, Kellner R (1996) Ag-layers on non-ferrous metals and alloys. A new substrate for surface enhanced Raman scattering (SERS). Vib Spectrosc 12:189–195CrossRefGoogle Scholar
  25. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675CrossRefGoogle Scholar
  26. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  27. Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–348CrossRefGoogle Scholar
  28. Xu ZC, Shen CM, Xiao CW, Yang TZ, Chen ST, Li HL, Gao HJ (2006) Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chem Phys Lett 432:222–225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry, School of ScienceBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Beijing Key Lab for Nano-Photonics and Nano-Structure (NPNS), Department of PhysicsCapital Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations