Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 5, pp 1855–1863 | Cite as

In situ controlled synthesis of various TiO2 nanostructured materials via a facile hydrothermal route

  • Hai Wang
  • Yong LiuEmail author
  • Minyi Zhong
  • Hongmei Xu
  • Hong Huang
  • Hui Shen
Research Paper

Abstract

Various TiO2 nanomaterials, such as nanosheets, nanoflowers, and nanowires were directly self assembled on titanium substrate on a large scale under hydrothermal conditions. The morphology of the formed TiO2 nanomaterials could be easily tuned by varying the experimental parameters of temperature, reaction time, and the NaOH concentration. A possible formation mechanism was suggested on the basis of the shape evolution of TiO2 nanostructures by SEM images in combination with XRD patterns of as-grown samples. The optical properties of TiO2 nanosheets, nanoflowers, and nanowires were characterized by reflectance spectroscopy. The studies revealed that the absorption capability of visible light is obviously different for TiO2 with different morphologies. Moreover, TiO2 nanosheets exhibited better light trapping than TiO2 nanoflowers and TiO2 nanowires due to their unique nanostructure.

Keywords

Large scale TiO2 nanomaterials One-dimension Titanium substrate 

Notes

Acknowledgment

We greatly appreciate the support of the National Natural Science Foundation of China (Grant No. 50702079), and the National High-Tech Research and Development Program of China (Grant No. 2006AA05Z409) for this study.

References

  1. Adachi M, Murata Y, Takao J, Jiu JT, Sakamoto M, Wang FM (2004) Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J Am Chem Soc 126:14943–14949CrossRefGoogle Scholar
  2. Bal XL, Xie B, Pan N, Wang XP, Wang HQ (2008) Novel three-dimensional dandelion-like TiO2 structure with high photocatalytic activity. J Solid State Chem 181:450–456CrossRefGoogle Scholar
  3. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824CrossRefGoogle Scholar
  4. Boercker JE, Enache-Pommer E, Aydil ES (2008) Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology 19:095604–095610CrossRefGoogle Scholar
  5. Cao G (2004) Growth of oxide nanorod arrays through sol electrophoretic deposition. J Phys Chem B 108:19921–19931CrossRefGoogle Scholar
  6. Colodrero S, Mihi A, Haggman L, Ocana M, Boschloo G, Hagfeldt A, Miguez H (2009) Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv Mater 21:764–770CrossRefGoogle Scholar
  7. Ferber J, Luther J (1998) Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol Energy Mater Sol Cells 54:265–275CrossRefGoogle Scholar
  8. Frank AJ, Kopidakis N, van de Lagemaat J (2004) Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev 248:1165–1179CrossRefGoogle Scholar
  9. Fujishima A, Honda K (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238:37–38CrossRefGoogle Scholar
  10. Grinis L, Dor S, Ofir A, Zaban A (2008) Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. J Photochem Photobiol A Chem 198:52–59CrossRefGoogle Scholar
  11. Kang TS, Smith AP, Taylor BE, Durstock MF (2009) Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett 9:601–606CrossRefGoogle Scholar
  12. Karuppuchamy S, Nonomura K, Yoshida T, Sugiura T, Minoura H (2002) Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics 151:19–27CrossRefGoogle Scholar
  13. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163CrossRefGoogle Scholar
  14. Kavan L, Gräzel M, Gilbert S, Klemenz C, Scheel H (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723CrossRefGoogle Scholar
  15. Kay A, Grätzel M (1996) Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells 44:99–117CrossRefGoogle Scholar
  16. Lin Y, Ma Y, Yang L, Xiao X, Zhou X, Li X (2006) Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells. J Electroanal Chem 588:51–58CrossRefGoogle Scholar
  17. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  18. Natarajan C, Nogami G (1996) Cathodic electrodeposition of nanocrystalline titanium dioxide thin films. J Electrochem Soc 143:1547–1550CrossRefGoogle Scholar
  19. Nazeeruddin M, Splivallo R, Liska P, Comte P, Grätzel M (2003) A swift dye uptake procedure for dye sensitized solar cells. Chem Commun 2003:1456–1457CrossRefGoogle Scholar
  20. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  21. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys Chem Chem Phys 7:4157–4163CrossRefGoogle Scholar
  22. Pan K, Zhang QL, Wang Q, Liu ZY, Wang DJ, Li JH, Bai YB (2007) The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods. Thin Solid Films 515:4085–4091CrossRefGoogle Scholar
  23. Papageorgiou N, Liska P, Kay A, Grätzel M (1999) Mediator transport in multilayer nanocrystalline photoelectrochemical cell configurations. J Electrochem Soc 146:898–907CrossRefGoogle Scholar
  24. Song MY, Ahn YR, Jo SM, Kim DY, Ahn JP (2005a) TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl Phys Lett 87:113113CrossRefGoogle Scholar
  25. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005b) New application of electrospun TiO2 solid-state dye-sensitized solar electrode to cells. Synth Metals 153:77–80CrossRefGoogle Scholar
  26. Tian ZRR, Voigt JA, Liu J, McKenzie B, Xu HF (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385CrossRefGoogle Scholar
  27. Usami A (1997) Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell. Chem Phys Lett 277:105–108CrossRefGoogle Scholar
  28. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260–263CrossRefGoogle Scholar
  29. Wei MD, Konishi Y, Zhou HS, Sugihara H, Arakawa H (2006a) Utilization of titanate nanotubes as an electrode material in dye-sensitized solar cells. J Electrochem Soc 153:A1232–A1236CrossRefGoogle Scholar
  30. Wei QS, Hirota K, Tajima K, Hashimoto K (2006b) Design and synthesis of TiO2 nanorod assemblies and their application for photovoltaic devices. Chem Mater 18:5080–5087CrossRefGoogle Scholar
  31. Xia Y, Yang P (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  32. Yang TS, Shiu CB, Wong MS (2004) Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation. Surf Sci 548:75–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hai Wang
    • 1
    • 2
  • Yong Liu
    • 1
    Email author
  • Minyi Zhong
    • 1
  • Hongmei Xu
    • 1
  • Hong Huang
    • 3
  • Hui Shen
    • 1
  1. 1.School of Physics and Engineering, Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and TechnologiesSun Yat-Sen UniversityGuangzhouChina
  2. 2.Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, Department of Material and Chemical EngineeringGuilin University of TechnologyGuilinChina
  3. 3.Instrumental Analysis and Research CenterSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations