Journal of Nanoparticle Research

, Volume 13, Issue 4, pp 1791–1800 | Cite as

Piezoelectric PZT nanodevices from a hybrid ligand burning method

  • Lorenzo Tattini
  • Pierandrea Lo Nostro
  • Andrea Ravalli
  • Manuela Stirner
  • Piero Baglioni
Research Paper


Piezoelectric PZT powders were synthesized via a nonconventional ligand combustion approach and through a novel hybrid synthesis, using commercially available starting materials. The effect of the different reactants and stabilizers was investigated through thermogravimetry and differential scanning calorimetry analyses, X-ray diffraction, transmission, and scanning electron microscopy. The size, morphology, crystallinity, and sintering behavior of the final PZT particles were determined. They reflect the effects due to the specific ligand and to the synthetic procedure used. The electro-mechanical properties of the PZT nanoparticles were evaluated in the pure state and in a mixture with calcium carbonate. Pressure-induced electric responses up to 2 V were detected.


PZT Nanoparticle(s) Piezoelectric Electro-mechanical properties Nanoparticle powder 



We thank Massimo Bonini and Riccardo Susini for useful discussions on the physico-chemical characterization of the nanoparticles and on the experimental setup for the electro-mechanical measurements. Part of this study was carried out in the framework of the European IP project “Polytect” (Polyfunctional Technical Textiles agains Natural Hazards) under the 6th F.P. Partial financial support from the European Commission and the Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI, Florence, Italy) is gratefully acknowledged.

Supplementary material

11051_2010_9930_MOESM1_ESM.doc (191 kb)
Supplementary material 1 (DOC 191 kb)


  1. Banerjee A, Bose S (2004) Free-standing lead zirconate titanate nanoparticles: low-temperature synthesis and densification. Chem Mater 16:5610–5615CrossRefGoogle Scholar
  2. Bell AJ (2006) Factors influencing the piezoelectric behaviour of PZT and other “morphotropic phase boundary” ferroelectrics. J Mater Sci 41:13–25CrossRefGoogle Scholar
  3. Bezzi F, Costa AL, Piazza D, Ruffini A, Albonetti S, Galassi C (2005) PZT prepared by spray drying: from powder synthesis to electromechanical properties. J Eur Ceram Soc 25:3323–3334CrossRefGoogle Scholar
  4. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  5. Camargo ER, Frantii J, Kakihana M (2001) Low-temperature chemical synthesis of lead zirconate titanate (PZT) powders free from halides and organics. J Mater Chem 11:1875–1879CrossRefGoogle Scholar
  6. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  7. Das RN, Pathak A, Pramanik P (1998) Low-temperature preparation of nanocrystalline lead zirconate titanate and lead lanthanum zirconate titanate powders using triethanolamine. J Am Ceram Soc 81:3357–3360CrossRefGoogle Scholar
  8. Das RN, Pati RK, Pramanik P (2000) A novel chemical route for the preparation of nanocrystalline PZT powder. Mater Lett 45:350–355CrossRefGoogle Scholar
  9. Davies MJ (2007) Picturing the elephant: giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals. J Electroceram 19:25–47CrossRefGoogle Scholar
  10. De Cicco G, Morten B, Dalmonego D, Prudenziati M (1999) Pyroelectricity of PZT-based thick-films. Sens Actuators A 76:409–415CrossRefGoogle Scholar
  11. Frantti J (2008) Notes of the recent structural studies on lead zirconate titanate. J Phys Chem B 112:6521–6535CrossRefGoogle Scholar
  12. Garnweitner G, Hentschel J, Antonietti M, Niederberger M (2005) Nonaqueous synthesis of amorphous powder precursors for nanocrystalline PbTiO3, Pb(Zr, Ti)O3, and PbZrO3. Chem Mater 17:4594–4599CrossRefGoogle Scholar
  13. Gubinyi Z, Batur C, Sayir A, Dynys F (2008) Electrical properties of PZT piezoelectric ceramic at high temperatures. J Electroceram 20:95–105CrossRefGoogle Scholar
  14. Guiffard B, Troccaz M (1998) Low temperature synthesis of stoichiometric and homogeneous lead zirconate titanate powder by oxalate and hydroxide coprecipitation. Mater Res Bull 33:1759–1768CrossRefGoogle Scholar
  15. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818CrossRefGoogle Scholar
  16. Harada S, Dunn S (2008) Low temperature hydrothermal routes to various PZT stoichiometries. J Electroceram 20:65–71CrossRefGoogle Scholar
  17. Hua Z, Yang P, Huang H, Wan J, Yu ZZ, Yang S, Lu M, Gu B, Du Y (2008) Sol–gel template synthesis and characterization of magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes. Mater Chem Phys 107:541–546CrossRefGoogle Scholar
  18. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  19. Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New YorkGoogle Scholar
  20. Khan SU, Göbel OF, Blank DHA, ten Elshof JE (2009) Patterning lead zirconate titanate nanostructures at Sub-200-nm resolution by soft confocal imprint lithography and nanotransfer molding. ACS Appl Mater Interfaces 1:2250–2255CrossRefGoogle Scholar
  21. Krishna GM, Rajanna K (2004) Tactile sensor based on piezoelectric resonance. IEEE Sens J 4:691–697CrossRefGoogle Scholar
  22. Linardos S, Zhang Q, Alcock JR (2006) Preparation of sub-micron PZT particles with the sol–gel technique. J Eur Ceram Soc 26:117–123CrossRefGoogle Scholar
  23. Liu WC, Li AD, Tan J, Wu D, Ye H, Ming NB (2005) Preparation and characterization of poled nanocrystal and polymer composite PZT/PC films. Appl Phys A 81:543–547CrossRefGoogle Scholar
  24. Piticescu RM, Vilarnho P, Popescu LM, Piticescu RR (2006) Perovskite nanostructures obtained by a hydrothermal electrochemical process. J Eur Ceram Soc 26:2945–2949CrossRefGoogle Scholar
  25. Sangsubun C, Watcharapasorn A, Jiansirisomboon S (2008) Effect of calcination temperature on phase and morphology of sol–gel derived PZTN powders. Adv Mater Res 55–57:77–80CrossRefGoogle Scholar
  26. Seol KS, Takeuchi K, Ohki Y (2004) Ferroelectricity of single-crystalline, monodisperse lead zirconate titanate nanoparticles of 9 nm in diameter. Appl Phys Lett 85:2325–2327CrossRefGoogle Scholar
  27. Setter N, Waser R (2000) Electroceramic materials. Acta Mater 48:151–178CrossRefGoogle Scholar
  28. Traianidis M, Courtois C, Leriche A, Thierry B (1999) Hydrothermal synthesis of lead zirconium titanate (PZT) powders and their characteristics. J Eur Ceram Soc 19:1023–1026CrossRefGoogle Scholar
  29. Tsai JZ, Chen CJ, Chen WY, Liu JT, Liao CY, Hsin YM (2009) A new PZT piezoelectric sensor for gravimetric applications using the resonance-frequency detection. Sens Actuators 139:259–264CrossRefGoogle Scholar
  30. Wu A, Vilarinho PM, Miranda Salvado IM, Baptista JL (2000) Sol–gel preparation of lead zirconate titanate powders and ceramics: effect of alkoxide stabilizers and lead precursors. J Am Ceram Soc 83:1379–1385CrossRefGoogle Scholar
  31. Yang WD (2001) PZT/PLZT ceramics prepared by hydrolysis and condensation of acetate precursors. Ceram Int 27:373–384CrossRefGoogle Scholar
  32. Zhang M, Miranda Salvado IM, Vilarinho PM (2003) Synthesis and characterization of lead zirconate titanate fibers prepared by the sol–gel method: the role of the acid. J Am Ceram Soc 86:775–781CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lorenzo Tattini
    • 1
  • Pierandrea Lo Nostro
    • 1
  • Andrea Ravalli
    • 1
  • Manuela Stirner
    • 1
  • Piero Baglioni
    • 1
  1. 1.Department of Chemistry and CSGIUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations