Journal of Nanoparticle Research

, Volume 13, Issue 4, pp 1593–1604 | Cite as

Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates

  • Guillermo Orts-Gil
  • Kishore Natte
  • Daniela Drescher
  • Harald Bresch
  • Alexandre Mantion
  • Janina Kneipp
  • Werner Österle
Research Paper


The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity.


Silica Toxicology Agglomeration BSA Nanoparticles Characterisation 



This study has been supported by the Federal Institute for Materials Research and Testing (BAM) within the framework of its ‘Innovationsoffensive’ since 2008. Furthermore, A.M. thanks the Adolf-Martens Fond e.V. for financial support. Sympatec GmbH is also acknowledged for the PCCS measurements with the instrument Nanophox©. G.O.G would like to thank R. Bienert and P. Knappe for the technical support in DLS measurements.

Supplementary material


  1. Bargeron CB (1974) Analysis of intensity correlation spectra of mixtures of polystyrene latex spheres: a comparison of direct least squares fitting with the method of cumulants. J Chem Phys 60(6):2516–2519CrossRefGoogle Scholar
  2. Bergna HE, Roberts WO (eds) (2006) Colloidal silica. Fundamentals and applications. CRC Press, Boca RatonGoogle Scholar
  3. Bresch H, Wassermann B, Langer B, Graf C, Flesch R, Becker U, Österreicher B, Leisner T, Rühl E (2008) Elastic light scattering from free sub-micron particles in the soft X-ray regime. Faraday Discuss 137:389–402CrossRefGoogle Scholar
  4. Brunner T, Wick P, Manser P, Spohn P, Grass R, Limbach L, Bruinink A, Tark WS (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381CrossRefGoogle Scholar
  5. Cho Y, Yi G, Chung Y, Park S, Yang S (2007) Complex colloidal microclusters from aerosol droplets. Langmuir 23:12079–12085CrossRefGoogle Scholar
  6. Costa C, Leite C, Galembeck F (2003) Size dependence of Stöber silica nanoparticle microchemistry. J Phys Chem B 107:4747–4755CrossRefGoogle Scholar
  7. Diaz B, Sanchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadan S, Yague C, Fernandez-Pacheco R, Ibarra M, Santamaria J, Gonzalez-Fernandez A (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4:2025–2034CrossRefGoogle Scholar
  8. Enomoto N, Koyano T, Nakagawa Z (1996) Effect of ultrasound on synthesis of spherical silica. Ultrason Sonochem 3:105–109CrossRefGoogle Scholar
  9. Enomoto N, Maruyama S, Nakagawa Z (1997) Agglomeration of silica spheres under ultrasonication. J Mater Res 12:1410–1415CrossRefGoogle Scholar
  10. Evans D, Wennerström H (1994) The colloidal domain: where physics, chemistry, biology, and technology meet. VCH Publishers Inc., WeinheimGoogle Scholar
  11. Flecha F Gonzalez, Levi Valeria (2003) Determination of the molecular size of BSA by fluorescence anisotropy. Biochem Mol Biol Educ 31:319–322CrossRefGoogle Scholar
  12. Gao HJ, Shi WD, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102:9469–9474CrossRefGoogle Scholar
  13. Giacomelli C, Norde W (2001) The adsorption desorption cycle. Reversibility of the BSA silica system. J Colloid Interface Sci 233:234–240CrossRefGoogle Scholar
  14. Grabe M, George G (2001) Regulation of organelle acidity. J Gen Physiol 117:329–344CrossRefGoogle Scholar
  15. Halas N (2008) Nanoscience under glass: the versatile chemistry of silica nanoparticles. ACS Nano 2:179–183CrossRefGoogle Scholar
  16. Hellweg Th, Brûlet A, Sottmann T (2000) Dynamics in an oil-continuous droplet microemulsions as seen by quasi-elastic scattering techniques. Phys Chem Chem Phys 2(22):5168–5174CrossRefGoogle Scholar
  17. Hiemenz PC (1977) Principles of colloid and surface chemistry. Marcel Dekker, New York and BaselGoogle Scholar
  18. Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, Nanashima N, Niki E, Yoshida Y (2009) Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22:543–553CrossRefGoogle Scholar
  19. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New YorkGoogle Scholar
  20. Jia G, Cao Z, Xue H, Xu Y, Jiang S (2009) Novel zwitterionic-polymer-coated silica nanoparticles. Langmuir 25:3196–3199CrossRefGoogle Scholar
  21. Jiang J, Oberdörster G, Biswas P (2009) Characterisation of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  22. Kershner RJ (1998) Surface forces during electrophoretic assembly of micron scale silica particles. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  23. Kline SR (2006) Reduction and analysis of SANS and USANS data using Igor Pro. J Appl Cryst 39(6):895CrossRefGoogle Scholar
  24. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57(11):4814–4820CrossRefGoogle Scholar
  25. Kotlarchyk M, Stephens RB, Huang JS (1988) Study of Schulz distribution to model polydispersity of microemulsion droplets. J Phys Chem 92:1533–1538CrossRefGoogle Scholar
  26. Lambot N, Lybaert P, Boom A, Delogne-Desnoeck J, Vanbellinghen AM, Graff G, Lebrun P, Meuris S (2006) Evidence for a clathrin-mediated recycling of albumin in human term placental. Biol Reprod 75:90–97CrossRefGoogle Scholar
  27. LaVerne JA, Tonnies SE (2003) H2 production in the radiolysis of aqueous SiO2 suspensions and slurries. J Phys Chem B 107:7277–7280CrossRefGoogle Scholar
  28. Lin W, Huang Y, Zhou X, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:255–259CrossRefGoogle Scholar
  29. Lison D, Thomassen L, Rabolli V, Gonzalez L, Napierska D, Seo J, Kirsch-Volders M, Hoet P, Kirschhock CA, Martens JA (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104:155–162CrossRefGoogle Scholar
  30. Lord M, Cousins B, Doherty P, Whitelock J, Simmons A, Williams RL, Milthorpe BK (2006) The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials 27:4856–4862CrossRefGoogle Scholar
  31. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 8:1341–1346CrossRefGoogle Scholar
  32. Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 2004 20:10639–10647CrossRefGoogle Scholar
  33. Mandzya N, Grulkeb E, Druffe T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126CrossRefGoogle Scholar
  34. Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M (2004) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem 109:175–187CrossRefGoogle Scholar
  35. Murdock RC, Stolle L Braydich, Schrand AM, Schlager JJ, Hussain SM (2008) Characterisation of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:293–253CrossRefGoogle Scholar
  36. Nichols G, Byard S, Bloxham M, Botterill J, Dawson N, Dennis A, Diart V, North N, Sherwood J (2002) A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterisation. J Pharm Sci 91:2103–2109CrossRefGoogle Scholar
  37. Orts-Gil G, Losik M, Schlaad H, Drechsler M, Hellweg Th (2008) Properties of pH-responsive mixed aggregates of polystyrene-block-poly(l-lysine) and nonionic surfactant in solution and absorbed at a solid surface. Langmuir 24:12823–12828CrossRefGoogle Scholar
  38. Orts-Gil G, Prévost S, Losik M, Hermes F, Schlaad H, Hellweg Th (2009) Polypeptide hybrid copolymers as selective micellar nanocarriers in non-aqueous media. Colloid Polym Sci 287:1295–1304CrossRefGoogle Scholar
  39. Provencher SW (1982) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242CrossRefGoogle Scholar
  40. Rejman J, Zuhorn Ans IS, Oberle V, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169CrossRefGoogle Scholar
  41. Rezwan K, Studart AR, Vörös J, Gauckler LJ (2005) Change of zeta potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B 109:14469–14474CrossRefGoogle Scholar
  42. Rübe A, Hause G, Mäder K, Kohlbrecher J (2005) Core–shell structure of miglyol/poly(D,L)/poloxamer nanocapsules studied by small-angle neutron scattering. J control release 107:244–252CrossRefGoogle Scholar
  43. Sabah JR, Schultz BD, Brown ZW, Nguyen AT, Reddan J, Takemoto LJ (2007) Transcytotic passage of albumin through lens epithelial cells. Investig Ophthalmol Vis Sci 48:1237–1244CrossRefGoogle Scholar
  44. Sharman RV, Sharman KC (1977) The structure factor and the transport properties of dense fluids having molecules with square well potential, a possible generalization. Physica A Stat Theoret Phys 89:213–217CrossRefGoogle Scholar
  45. Shchukarev AV (2007) A study of the SiO2 aqueous electrolyte (NaCl, CsCl) interface by X-ray photoelectron spectroscopy. Colloid J 69:514–525CrossRefGoogle Scholar
  46. Thierry B, Zimmer L, McNiven S, Finnie K, Barbe Ch,Griesser HJ (2008) Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles. Langmuir 24:8143–8150CrossRefGoogle Scholar
  47. Thomassen LCJ, Aerts A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Napierska D, Hoet PH, Kirschhock CEA, Martens JA (2010) Synthesis and characterisation of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26(1):328–335CrossRefGoogle Scholar
  48. Tikhonov AM (2007) Compact layer of alkali ions at the surface of colloidal silica. J Phys Chem C 111:930–937CrossRefGoogle Scholar
  49. Trompette JL, Meireles M (2003) Ion-specific effect on the gelation kinetics of concentrated colloidal silica suspensions. J Colloid Interface Sci 263:522–527CrossRefGoogle Scholar
  50. Urban C, Romer S, Scheffold F, Schurtenberger P (2000) Structure, dynamics and interactions in concentrated colloidal suspensions and gels. Prog Colloid Polym Sci 115:270–274CrossRefGoogle Scholar
  51. Vansant EF, Voort Pascal, Vrancken Karl C (1995) Characterisation and chemical modification of the silica surface. Elsevier, AmsterdamGoogle Scholar
  52. Various (2006) Synthetic amorphous silica. European centre for ecotoxicology and toxicology of chemicals. ECETOC JACC No. 51Google Scholar
  53. Wahrheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterisation? Toxicol Sci 101:183–185CrossRefGoogle Scholar
  54. Wang L, Zhao W, Tan W (2008) Bioconjugated silica nanoparticles: development and applications. Nano Res 1:99–115CrossRefGoogle Scholar
  55. Woehrle GH, Hutchison JE, Özkar S, Finke RG (2006) Analysis of nanoparticle transmission electron microscopy data using a public-domain image-processing program, image. Turk J Chem 30:1–13Google Scholar
  56. Zelenyuk A, Imre Y, Caiand D (2006) From agglomerates of spheres to irregular shaped particles: determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Sci Technol 40:197–217Google Scholar
  57. Zerrouka R, Foissya A, Mercier R, Chevallierb Y, Morawsk JC (1990) Study of Ca2+ induced silica coagulation by small angle scattering. J Colloid Interface Sci 139: 20–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Guillermo Orts-Gil
    • 1
  • Kishore Natte
    • 1
  • Daniela Drescher
    • 2
  • Harald Bresch
    • 1
  • Alexandre Mantion
    • 2
  • Janina Kneipp
    • 2
    • 3
  • Werner Österle
    • 1
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.BAM Federal Institute for Materials Research and TestingBerlinGermany
  3. 3.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations