Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 8, pp 3057–3067 | Cite as

Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

  • K. Uzun
  • E. Çevik
  • M. ŞenelEmail author
  • H. Sözeri
  • A. Baykal
  • M. F. Abasıyanık
  • M. S. Toprak
Research Paper

Abstract

In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate (V max) and Michaelis–Menten constant (K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

Keywords

Invertase Immobilization Dendrimer SPION Nanoparticle Nanobiotechnology 

References

  1. Berkowitz AE, Schuele WJ, Flanders PJ (1968) Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 articles. J Appl Phys 39:1261–1263CrossRefADSGoogle Scholar
  2. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160CrossRefADSGoogle Scholar
  3. Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27:1140–1142CrossRefADSGoogle Scholar
  4. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504CrossRefPubMedGoogle Scholar
  5. Corti M, Lascialfari A, Micotti E, Castellano A, Donativi M, Quarta A, Cozzoli PD, Manna L, Pellegrino T, Sangregorio C (2008) Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals. J Magn Magn Mater 320(14):E320–E323CrossRefADSGoogle Scholar
  6. Crooks RM, Zhao M, Sun L (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190CrossRefPubMedGoogle Scholar
  7. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading, MA, 61:190–196Google Scholar
  8. Durmus Z, Kavas H, Toprak MS, Baykal A, Altınçekiç TG, Aslan A, Bozkurt A, Coşgun S (2009) l-Lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J Alloys Compd 484:371–376CrossRefGoogle Scholar
  9. Gao F, Pan BF, Zheng WM, Ao LM, Gu HC (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new. J Magn Magn Mater 293:48–54CrossRefADSGoogle Scholar
  10. Gates B, Xia Y (2001) Photonic bandgap properties of opaline lattices of spherical colloids doped with various concentrations of smaller colloids. Appl Phys Lett 78:3178–3180CrossRefADSGoogle Scholar
  11. Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3867CrossRefPubMedGoogle Scholar
  12. Hall BD, Zanchet D, Ugarte D (2000) Estimating nanoparticle size from diffraction measurements. J Appl Crystallogr 33:1335–1341CrossRefGoogle Scholar
  13. Haneda K, Morrish AH (1968) Noncollinear magnetic structure of CoFe2O4 small particles. J Appl Phys 63:4258–4260CrossRefADSGoogle Scholar
  14. Haneda K, Kojima H, Morrish AH, Picone PJ, Wakai K (1982) Noncollinearity as a size effect of CrO2 small particles. J Appl Phys 53:2686–2688CrossRefADSGoogle Scholar
  15. Hongwei G, Keming X, Zhimou Y, Chang CK, Xu B (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chem Commun 34:4270–4271Google Scholar
  16. Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391CrossRefPubMedGoogle Scholar
  17. Isık S, Alkan S, Toppare L, Cianga I, Yağcı Y (2003) Immobilization of invertase and glucose oxidase in poly 2-methylbutyl-2-(3-thienyl) acetate/polypyrrole matrices. Eur Polym J 39:2375–2381CrossRefGoogle Scholar
  18. Jang JH, Lim HB (2010) Characterization and analytical application of surface modified magnetic nanoparticles. Microchem J 94:148–158CrossRefGoogle Scholar
  19. Juillerat-Jeanneret L, Schmitt F (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Res Rev 27:574–590CrossRefGoogle Scholar
  20. Kasapoğlu N, Baykal A, Köseoğlu Y, Toprak MS (2007) Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scr Mater 57:441–444CrossRefGoogle Scholar
  21. Katzir Katchalski E (1993) Immobilized ensymes—larning from past successes and failures. Trends Biotechnol 11:471–478CrossRefGoogle Scholar
  22. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36CrossRefADSGoogle Scholar
  23. Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:263–276Google Scholar
  24. Mahalingam K, Onclin S, Pe’ter M, Ravoo BJ, Huskens J, Reinhoudt DN (2004) Directed self-sssembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions. Langmuir 20:11756–11762CrossRefPubMedGoogle Scholar
  25. Melo JS, D’Souza SF (2000) A simple approach for the simultaneous isolation and immobilization of invertase using crude extracts of yeast and Jack bean meal. J Biochem Biophys Methods 42:133–135CrossRefPubMedGoogle Scholar
  26. Mikhaylova M, Kim DK, Berry CC, Zagorodni A, Toprak M, Curtis ASG, Muhammed M (2004) BSA Immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater 16:2344–2354CrossRefGoogle Scholar
  27. Milovanović A, Božić N, Vujčić Z (2007) Cell wall invertase immobilization within calcium alginate beads. Food Chem 104:81–86CrossRefGoogle Scholar
  28. Mura CV, Becker MI, Orellana A, Wolff D (2002) Immunopurification of Golgi vesicles by magnetic sorting. J Immunol Methods 260:263–271CrossRefPubMedGoogle Scholar
  29. Narayanan VV, Newkome GR (1998) Supramolecular chemistry within dendritic structures. Top Curr Chem 197:19–77CrossRefGoogle Scholar
  30. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380Google Scholar
  31. Nyquist RA, Kagel RO (1971) Infrared spectra of ınorganic compounds. Academic Press, New YorkGoogle Scholar
  32. Ozkaya T, Toprak MS, Baykal A, Kavas H, Köseoğlu Y, Aktas B (2009) Synthesis of Fe3O4 nanoparticles at 100°C and ıts magnetic characterization. J Alloys Compd 472:18–23CrossRefGoogle Scholar
  33. Pankhurst QA, Pollard RJ (1991) Origin of the spin-canting anomaly in small ferrimagnetic particles. Phys Rev Lett 67:248–250CrossRefADSPubMedGoogle Scholar
  34. Parker FT, Foster MW, Margulies DT, Berkowitz AE (1993) Spin canting, surface magnetization, and finite-size effects in γ-Fe2O3 particles. Phys Rev B 47:7885–7891CrossRefADSGoogle Scholar
  35. Pielaszek R (2003) Analytical expression for diffraction line profile for polydispersive powders. Appl Crystallogr. Proceedings of the XIX ConferenceGoogle Scholar
  36. Roca AG, Niznansky D, Poltierova-Vejpravova J, Bittova B, González-Fernández MA, Serna CJ, Morales MP (2009) Magnetite nanoparticles with no surface spin canting. J Appl Phys 105:114309CrossRefADSGoogle Scholar
  37. Rossi LM, Quach AD, Rosenzweig Z (2004) Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 380:606–613CrossRefPubMedGoogle Scholar
  38. Sahmetlioglu E, Yürük H, Toppare L, Cianga I, Yagci Y (2006) Immobilization of invertase and glucose oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole. React Funct Polym 66:365–371CrossRefGoogle Scholar
  39. Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. J Colloid Interface Sci 6:11–16CrossRefGoogle Scholar
  40. Tanioka A, Yokoyama Y, Miyasaka K (1998) Preparation and properties of enzyme-ımmobilized porous polypropylene films. J Colloid Interface Sci 200:185–187CrossRefGoogle Scholar
  41. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  42. Toprak MS, McKenna BJ, Waite H, Stucky GD (2007) Spontaneous assembly of magnetic microspheres. Chem Mater 19:4263–4269CrossRefGoogle Scholar
  43. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11:81–91CrossRefGoogle Scholar
  44. Tromsdorf UI, Bigall NC, Kaul M, Bruns OT, Nikolic MS, Mollwitz B, Sperling RA, Reimer R, Hohenberg H, Parak WJ, Förster S, Beisiegel U, Adam G, Weller H (2007) Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett 7(8):2422–2427CrossRefADSPubMedGoogle Scholar
  45. Wang L, Bao J, Wang L, Zhang F, Li Y (2006) One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J 12:6341–6347CrossRefGoogle Scholar
  46. Wei S, Zhu Y, Zhang Y, Xu J (2007) Preparation and characterization of hyperbranched aromatic polyamides/Fe3O4 magnetic nanocomposite. React Funct Polym 66:1272–1277CrossRefGoogle Scholar
  47. Wejrzanowski T, Pielaszek R, Opalinska A, Matysiak H, Łojkowski W, Kurzydłowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208CrossRefADSGoogle Scholar
  48. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie International Edition 47(29):5362–5365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • K. Uzun
    • 1
  • E. Çevik
    • 1
  • M. Şenel
    • 1
    Email author
  • H. Sözeri
    • 2
  • A. Baykal
    • 1
  • M. F. Abasıyanık
    • 3
  • M. S. Toprak
    • 4
  1. 1.Department of Chemistry, Faculty of Arts and SciencesFatih UniversityIstanbulTurkey
  2. 2.TUBITAK-UME, National Metrology InstituteGebze-KocaeliTurkey
  3. 3.Department of Genetics and Bioengineering, Faculty of EngineeringFatih UniversityIstanbulTurkey
  4. 4.Department of Functional MaterialsRoyal Institute of Technology-KTHStockholmSweden

Personalised recommendations