Journal of Nanoparticle Research

, Volume 12, Issue 5, pp 1711–1721 | Cite as

Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach

  • Pala Rajasekharreddy
  • Pathipati Usha Rani
  • Bojja Sreedhar
Research Paper


The development of rapid and ecofriendly processes for the synthesis of silver (Ag) and gold (Au) nanoparticles is of great importance in the field of nanotechnology. In this study, the extracellular production of Ag and Au nanoparticles was carried out from the leaves of the plants, Tridax procumbens L. (Coat buttons), Jatropa curcas L. (Barbados nut), Calotropis gigantea L. (Calotropis), Solanum melongena L. (Eggplant), Datura metel L. (Datura), Carica papaya L. (Papaya) and Citrus aurantium L. (Bitter orange) by the sunlight exposure method. Qualitative comparisons of the synthesized nanoparticles between the plants were measured. Among these T. procumbens, J. curcas and C. gigantea plants synthesized <20 nm sized and spherical-shaped Ag particles, whereas C. papaya, D. metel and S. melongena produced <20 nm sized monodispersed Au particles. The amount of nanoparticles synthesized and its qualitative characterization was done by UV–vis spectroscopy and transmission electron microscopy (TEM), respectively. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used for structural confirmation. Further analysis carried out by fourier transform infrared spectroscopy (FTIR), provided evidence for the presence of amino groups, which increased the stability of the synthesized nanoparticles.


Silver nanoparticles Gold nanoparticles Biogenic synthesis of nanoparticles Sunlight Nanobiotechnology 



Authors are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for the research grant and Dr. J. S. Yadav, Director of Indian Institute of Chemical Technology, Hyderabad, for the facilities and encouragement.


  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press Inc., New YorkGoogle Scholar
  2. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5(10):1665–1671. doi: 10.1166/jnn.2005.184 CrossRefPubMedGoogle Scholar
  3. Armendariz V, Gardea-Torresdey JL, Jose-Yacaman M, Gonzalez J, Herrera I, Parsons JG (2002) Gold nanoparticles formation by oat and wheat biomasses. In: Proceedings—waste research technology conference at the Kansas City, Mariott-Country Club Plaza, July 30–Aug 1Google Scholar
  4. Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382CrossRefGoogle Scholar
  5. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583. doi: 10.1021/bp0501423 CrossRefPubMedGoogle Scholar
  6. Dabbagh MA, Moghimipour E, Ameri A, Sayfoddin N (2008) Physicochemical characterization and antimicrobial activity of nanosilver containing hydrogels. Iran J Pharm Res 7(1):21–28Google Scholar
  7. Duran N, Marcato PD, Alves OL, De-Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi: 10.1186/1477-3155-3-8 CrossRefGoogle Scholar
  8. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation characterization and enzymatic activity. Langmuir 17(5):1674–1679. doi: 10.1021/la001164w CrossRefGoogle Scholar
  9. Grisel R, Weststrate KJ, Gluhoi A, Nieuwenhuys BE (2002) Catalysis by gold nanoparticles. Gold Bull 35:39–45Google Scholar
  10. Haverkamp RG, Marshall AT, Agterveld DV (2007) Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo. J Nanopart Res 9:697–700. doi: 10.1007/s11051-006-9198-y CrossRefGoogle Scholar
  11. Hayat MA (1990) Colloidal gold: principles methods and applications. Academic Press, New YorkGoogle Scholar
  12. Huang YF, Huang KM, Chang HT (2006) Synthesis and characterization of Au core–Au–Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH. J Colloid Interf Sci 301:145–154. doi: 10.1016/j.jcis.2006.04.079 CrossRefGoogle Scholar
  13. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114. doi: 10.1088/0957-4484/18/10/105104 CrossRefADSGoogle Scholar
  14. Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Biostructures 4(3):557–563Google Scholar
  15. Jayendra K, Young YK, Jungho H, Mahendra R (2009) Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J Bionanoscience 3(1):39–44. doi: 10.1166/jbns.2009.1008 CrossRefGoogle Scholar
  16. Kasthuri J, Kathiravan K, Rajendiran N (2008) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085. doi: 10.1007/s11051-008-9494-9 CrossRefGoogle Scholar
  17. Kattumuri V, Katti K, Bhaskaran S et al (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341. doi: 10.1002/smll.200600427 CrossRefPubMedGoogle Scholar
  18. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban VW, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100. doi: 10.1088/0957-4484/14/1/321 CrossRefADSGoogle Scholar
  19. Krpetic Z, Scarı G, Caneva E, Speranza G, Porta F (2009) Gold nanoparticles prepared using Cape aloe active components. Langmuir 25(13):7217–7221. doi: 10.1021/la9009674 CrossRefPubMedGoogle Scholar
  20. Kumar V, Yadav SK (2008) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157. doi: 10.1002/jctb.2023 CrossRefGoogle Scholar
  21. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang C (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–885. doi: 10.1039/b615357g CrossRefGoogle Scholar
  22. Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18(1):83–86Google Scholar
  23. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 5(3):461–463. doi: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X CrossRefGoogle Scholar
  24. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800. doi: 10.1021/la9502711 CrossRefGoogle Scholar
  25. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590. doi: 10.1016/j.matlet.2008.08.044 CrossRefGoogle Scholar
  26. Patel JD, Chaudhuri TK (2009) Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite. Mater Res Bull 44:1647–1651. doi: 10.1016/j.materresbull.2009.04.010 CrossRefGoogle Scholar
  27. Ramamurthy N, Kannan S (2007) Fourier transform infrared spectroscopic analysis of a plant, Calotropis gigantea L. from an industrial village, Cuddalore Dt., Tamilnadu, India. Romanian J Biophys 17(4):269–276Google Scholar
  28. Sastry M, Patil V, Sainkar SR (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102(8):1404–1410. doi: 10.1021/jp9719873 Google Scholar
  29. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci 97(3):996–1001CrossRefPubMedADSGoogle Scholar
  30. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520. doi: 10.1002/smll.200400053 CrossRefPubMedGoogle Scholar
  31. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interf Sci 275:496–502. doi: 10.1016/j.jcis.2004.03.003 CrossRefGoogle Scholar
  32. Song JY, Kim BS (2008) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84. doi: 10.1007/s00449-008-0224-6 CrossRefPubMedGoogle Scholar
  33. Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138. doi: 10.1016/j.procbio.2009.06.005 CrossRefGoogle Scholar
  34. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908. doi: 10.1039/b712170a CrossRefPubMedGoogle Scholar
  35. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418. doi: 10.1016/j.matlet.2006.07.042 CrossRefGoogle Scholar
  36. Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045. doi: 10.1039/b712179m CrossRefPubMedGoogle Scholar
  37. Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-basedelectrochemical biosensors. Anal Bioanal Chem 382:884–886CrossRefPubMedGoogle Scholar
  38. Yasui K, kimizuka N (2005) Enzymatic synthesis of gold nanoparticles wrapped by glucose oxidase. Chem Lett 34(3):416. doi: 10.1246/cl.2005.416 Google Scholar
  39. Zhang G, Keita B, Dolbecq A, Mialane P, Sécheresse F, Miserques F, Nadjo L (2007) Green chemistry-type one-step synthesis of silver nanostructures based on MoV–MoVI mixed-valence polyoxometalates. Chem Mater 19(24):5821–5823. doi: 10.1021/cm7020142 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Pala Rajasekharreddy
    • 1
  • Pathipati Usha Rani
    • 1
  • Bojja Sreedhar
    • 2
  1. 1.Biology and Biotechnology DivisionIndian Institute of Chemical TechnologyTarnaka, HyderabadIndia
  2. 2.Inorganic and Physical Chemistry LaboratoryIndian Institute of Chemical TechnologyTarnaka, HyderabadIndia

Personalised recommendations