Journal of Nanoparticle Research

, Volume 12, Issue 3, pp 1065–1072 | Cite as

Electrochemically grown rough-textured nanowires

  • Pawan Tyagi
  • David Postetter
  • Daniel Saragnese
  • Stergios J. Papadakis
  • David H. Gracias
Research Paper


Nanowires with a rough surface texture show unusual electronic, optical, and chemical properties; however, there are only a few existing methods for producing these nanowires. Here, we describe two methods for growing both free standing and lithographically patterned gold (Au) nanowires with a rough surface texture. The first strategy is based on the deposition of nanowires from a silver (Ag)–Au plating solution mixture that precipitates an Ag–Au cyanide complex during electrodeposition at low current densities. This complex disperses in the plating solution, thereby altering the nanowire growth to yield a rough surface texture. These nanowires are mass produced in alumina membranes. The second strategy produces long and rough Au nanowires on lithographically patternable nickel edge templates with corrugations formed by partial etching. These rough nanowires can be easily arrayed and integrated with microscale devices.


Roughness Nanowire Alumina template Lithographic template Synthesis methods 



We thank Gloria Olivier for FTIR and Mark Koontz with SEM imaging. We thank J. H. Wang for reproducing rough-textured nanowires. This effort was sponsored in part by the National Consortium for Measurement and Signature (MASINT) Intelligence. Directed by Congress, the Secretary of Defense established the NCMR to leverage basic research at Universities, National Laboratories, and in industry. The NCMR serves as an incubator for cutting-edge MASINT research for the Intelligence Community (IC) and steward for the advancement of MASINT as a vital contributor to national security.

Supplementary material

11051_2010_9875_MOESM1_ESM.doc (1.8 mb)
Supplementary material 1 (DOC 1812 kb)


  1. Akguc GB, Gong JB (2008) Conductance properties of rough quantum wires with colored surface disorder. Phys Rev B 78:115317CrossRefADSGoogle Scholar
  2. Bierman MJ, Lau YKA, Kvit AV, Schmitt AL, Jin S (2008) Dislocation-driven nanowire growth and Eshelby twist. Science 320:1060–1063CrossRefPubMedADSGoogle Scholar
  3. Byun KM, Yoon SJ, Kim D, Kim SJ (2007) Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness. J Opt Soc Am A 24:522–529CrossRefADSGoogle Scholar
  4. Djenizian T, Hanzu I, Premchand YD, Vacandio F, Knauth P (2008) Electrochemical fabrication of Sn nanowires on titania nanotube guide layers. Nanotechnology 19:205601CrossRefADSGoogle Scholar
  5. Glasstone S (1942) An introduction to electrochemistry. D.Van Nostrand Company, Inc., New YorkGoogle Scholar
  6. Guo S, Wen D, Dong S, Wang E (2009) Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta 77:1510–1517CrossRefPubMedGoogle Scholar
  7. Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167CrossRefPubMedADSGoogle Scholar
  8. Hoffman JA, Miragliotta JA, Wang J, Tyagi P, Maddanimath T, Gracias DH, Papadakis SJ (2009) Scanning surface-enhanced Raman spectroscopy (SERS) of chemical agent simulants on templated Au-Ag nanowire substrates. Proc SPIE 7318:D1–D10Google Scholar
  9. Inguanta R, Butera M, Sunseri C, Piazza S (2007) Fabrication of metal nano-structures using anodic alumina membranes grown in phosphoric acid solution: tailoring template morphology. App Surf Sci 253:5447–5456CrossRefADSGoogle Scholar
  10. Jackowska K, Biegunski AT, Tagowska M (2008) Hard template synthesis of conducting polymers: a route to achieve nanostructures. J Solid State Electrochem 12:437–443CrossRefGoogle Scholar
  11. Ji CX, Searson PC (2002) Fabrication of nanoporous gold nanowires. App Phys Lett 81:4437–4439CrossRefADSGoogle Scholar
  12. Ji CX, Oskam G, Ding Y, Erlebacher JD, Wagner AJ, Searson PC (2003) Deposition of AuxAg1-xAuyAg1-y multilayer sand multisegment nanowires. J Electrochem Soc 150:C523–C528CrossRefGoogle Scholar
  13. Laocharoensuk R, Sattayasamitsathit S, Burdick J, Kanatharana P, Thavarungkul P, Wang J (2007) Shape-tailored porous gold nanowires: from nano barbells to nano step-cones. ACS Nano 1:403–408CrossRefPubMedGoogle Scholar
  14. Lombardi I, Magagnin L, Cavallotti PL, Carraro C, Maboudian R (2006) Electrochemical fabrication of supported Ni nanostructures through transferred porous anodic alumina mask. Electrochem Solid State Lett 9:D13–D16CrossRefGoogle Scholar
  15. Menke EJ, Thompson MA, Xiang C, Yang LC, Penner RM (2006) Lithographically patterned nanowire electrodeposition. Nat Mater 5:914–919CrossRefPubMedADSGoogle Scholar
  16. Oskam G, Long JG, Natrajan A, Searson PC (1998) Electrochemical deposition of metals onto silicon. J Phys D 31:1927–1949CrossRefADSGoogle Scholar
  17. Papadakis SJ, Miragliotta JA, Gu Z, Gracias DH (2005) Scanning surface-enhanced Raman spectroscopy of silver nanowire. Proc SPIE 59271:H1–H8Google Scholar
  18. Sun C, Chen P, Zhou S (2007) AgCl nanoparticle nanowires fabricated by template method. Mater Lett 61:1645–1648CrossRefGoogle Scholar
  19. Tyagi P, Postetter D, Saragnese DL, Randall CL, Mirski MA, Gracias DH (2009) Patternable nanowire sensors for electrochemical recording of dopamine. Anal Chem 81:9979–9984CrossRefPubMedGoogle Scholar
  20. Urban V, Pretsch T, Hartl H (2005) From AgCN chains to a fivefold helix and a fishnet-shaped framework structure. Angew Chem Int Ed 44:2794–2797CrossRefGoogle Scholar
  21. Wang DH, Xu D, Wang D, Hao YJ, Jin GQ, Guo XY, Tu KN (2008) Periodically twinned SiC nanowires. Nanotechnology 19:215602CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Pawan Tyagi
    • 1
  • David Postetter
    • 1
  • Daniel Saragnese
    • 1
  • Stergios J. Papadakis
    • 2
  • David H. Gracias
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA

Personalised recommendations