Journal of Nanoparticle Research

, Volume 12, Issue 8, pp 2843–2849 | Cite as

Study of tryptophan assisted synthesis of gold nanoparticles by combining UV–Vis, fluorescence, and SERS spectroscopy

Research Paper

Abstract

We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV–Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

Keywords

Colloids Gold Nanomedicine Nanoparticles Tryptophan Thermo-induced synthesis 

Notes

Acknowledgment

This work was supported by the National University Research Council (CNCSIS) in the frame of the PN-II program (Project No. 477/2008 and Project No 562/2009).

References

  1. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432CrossRefGoogle Scholar
  2. Alivastos AP, Johnson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611CrossRefADSGoogle Scholar
  3. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefADSPubMedGoogle Scholar
  4. Aslan K, Gryczynski I, Malicka J, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62CrossRefPubMedGoogle Scholar
  5. Baia M, Astilean S, Iliescu T (2008) Raman and SERS investigations of pharmaceuticals. Springer, BerlinGoogle Scholar
  6. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefPubMedGoogle Scholar
  7. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties, and applications towards biology, catalysis and nanotechnology. Chem Rev 104:293–346CrossRefPubMedGoogle Scholar
  8. Han MS, Lytton-Jean AKR, Oh BK, Heo J, Mirkin CA (2006) Colorimetric screening of DNA binding molecules with gold nanoparticle probes. Angew Chem Int Ed 45:1807–1810CrossRefGoogle Scholar
  9. Iosin M, Toderas F, Baldeck P, Astilean S (2008) In vitro biosynthesis of gold nanotriangles for surface-enhanced Raman spectroscopy. J Optoelectron Adv Mater 10:2285–2288Google Scholar
  10. Iosin M, Toderas F, Baldeck PL, Astilean S (2009) Study of protein–gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct 924–926:196–200CrossRefGoogle Scholar
  11. Iwamoto M, Kuroda K, Zaporojtchenko V, Hayashi S, Faupel F (2003) Production of gold nanoparticles-polymer composite by quite simple method. Eur Phys J D 24:365–367CrossRefADSGoogle Scholar
  12. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118CrossRefGoogle Scholar
  13. Lakowicz JR, Geddes CD (2005) Radiative decay engineering. Springer, New YorkGoogle Scholar
  14. Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12:4723–4730CrossRefGoogle Scholar
  15. Mann S, Shenton W, Li M, Connolly S, Fitzmaurice D (2000) Biologically programmed nanoparticle assembly. Adv Mater 12:147–150CrossRefGoogle Scholar
  16. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefADSPubMedGoogle Scholar
  17. Miura T, Takeuchi H, Harada I (1988) Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry 27:88–94CrossRefPubMedGoogle Scholar
  18. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefADSGoogle Scholar
  19. Njoki PN, Lim I-Im S, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669CrossRefGoogle Scholar
  20. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77:3261–3266CrossRefPubMedGoogle Scholar
  21. Polavarapu L, Xu QX (2008) A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties. Nanotechnology 19:075601CrossRefADSGoogle Scholar
  22. Potara M, Maniu D, Astilean S (2009) The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Nanotechnology 20:315602CrossRefADSPubMedGoogle Scholar
  23. Qui T, Zhang W, Chu PK (2009) Recent progress in fabrication of anisotropic nanostructures for surface-enhanced Raman spectroscopy. Recent Pat Nanotechnol 3(1):10–20CrossRefGoogle Scholar
  24. Selvakannan P, Mandal S, Phadtare S, Pasricha R, Sastry M (2003) Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549CrossRefGoogle Scholar
  25. Selvakannan P, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya SD, Sastry M (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–102CrossRefPubMedGoogle Scholar
  26. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572CrossRefGoogle Scholar
  27. Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun 9:1104–1105CrossRefGoogle Scholar
  28. Si S, Bhattacharjee RR, Banerjee A, Mandal TK (2006) A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine-based oligopeptides. Chem Eur J 12:1256–1265CrossRefGoogle Scholar
  29. Slocik JM, Naik RR, Stone MO, Wright DW (2005a) Viral templates for gold nanoparticle synthesis. J Mater Chem 15:749–753CrossRefGoogle Scholar
  30. Slocik JM, Stone MO, Naik RR (2005b) Synthesis of gold nanoparticles using multifunctional peptides. Small 1:1048–1052CrossRefPubMedGoogle Scholar
  31. Smith E, Dent G (2005) Modern Raman spectroscopy—a practical approach. John Wiley & Sons, EnglandGoogle Scholar
  32. Wanhoo N, Bhasin KK, Mehta SK, Suri CR (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci 323:247–254CrossRefGoogle Scholar
  33. Xu X, Stevens M, Cortie MB (2004) In situ precipitation of gold nanoparticles onto glass for potential architectural applications. Chem Mater 16:2259–2266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Monica Iosin
    • 1
  • Patrice Baldeck
    • 2
  • Simion Astilean
    • 1
  1. 1.Nanobiophotonics Laboratory, Institute for Interdisciplinary Experimental ResearchBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Laboratoire de Spectrométrie PhysiqueUniversité Joseph Fourier, CNRS (UMR5588)Saint Martin d’HèresFrance

Personalised recommendations