Journal of Nanoparticle Research

, Volume 12, Issue 3, pp 1045–1053 | Cite as

Three-dimensional characterization of multiply twinned nanoparticles by high-angle tilt series of lattice images and tomography

  • X. J. Xu
  • Z. Saghi
  • B. J. Inkson
  • G. Möbus
Research Paper


A new electron tomography methodology is presented which allows the reconstruction of external particle shape from lattice resolved high-resolution electron microscopy images. The technique is based on the shape-from-silhouette binary backprojection algorithm after filtering of the lattice contrast. The simultaneous availability of particle shape and crystallographic lattice plane orientations allows the correlation of faceting with crystallographic orientations. The method is demonstrated using a multiply twinned decahedral gold nanoparticle. Eligibility limits in terms of degree of convexity are derived.


Gold nanoparticles Tomography Twin boundaries 3D reconstruction Instrumentation Metrology 



This study was supported by a grant from the EPSRC Basic Technology Programme, GR/S85689/01, UK.


  1. Ascencio JA, Gutierrez-Wing C, Espinosa ME, Marin M, Tehuacanero S, Zorrilla C, Yacaman MJ (1998) Structure determination of small particles by HREM imaging: theory and experiment. Surf Sci 396:349–368CrossRefADSGoogle Scholar
  2. Frank J (2007) Electron tomography: methods for three-dimensional visualization of structures in the cell, 2nd edn. Plenum Press, New YorkGoogle Scholar
  3. Gardner RJ (1995) Geometric tomography. Plenum Press, New YorkzbMATHGoogle Scholar
  4. Gu QF, Krauss G, Steurer W, Gramm F, Cervellino A (2008) Unexpected high stiffness of Ag and Au nanoparticles. Phys Rev Lett 100:045502CrossRefPubMedADSGoogle Scholar
  5. Huang WJ, Jiang BR, Sun RS, Zuo JM (2007) Towards sub-Angstrom resolution electron diffraction imaging of metallic nanoclusters. Ultramicroscopy 107:1159–1170CrossRefPubMedGoogle Scholar
  6. Huang WJ, Sun R, Tao J, Menard LD, Nuzzo RG, Zuo JM (2008) Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7:308–313CrossRefPubMedADSGoogle Scholar
  7. Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56:616–619CrossRefPubMedADSGoogle Scholar
  8. Kizuka T (1998) Atomic process of point contact in gold studied by time-resolved high-resolution transmission electron microscopy. Phys Rev Lett 81:4448–4451CrossRefADSGoogle Scholar
  9. Koga K, Sugawara K (2003) Population statistics of gold nanoparticle morphologies: direct determination by HREM observations. Surf Sci 529:23–35CrossRefADSGoogle Scholar
  10. Koga K, Ikeshoji T, Sugawara K (2004) Size- and temperature dependant structural transitions in gold nanoparticles. Phys Rev Lett 92:115507 1CrossRefPubMedADSGoogle Scholar
  11. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMedGoogle Scholar
  12. Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451:46–48CrossRefPubMedGoogle Scholar
  13. Midgley PA, Weyland M (2003) 3D electron microscopy in the physical sciences. Ultramicroscopy 96:413–431CrossRefPubMedGoogle Scholar
  14. Möbus G, Inkson BJ (2001) Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl Phys Lett 79:1369–1371CrossRefADSGoogle Scholar
  15. Pfeifer MA, Williams GJ, Vartanyants IA, Harder R, Robinson IK (2006) Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442:63–66CrossRefPubMedADSGoogle Scholar
  16. Rodríguez-López JL, Montejano-Carrizales JM, José-Yacamán M (2006) Low dimensional non-crystallographic metal structures: HRTEM simulation, models and experimental results. Mod Phys Lett B 20:725–751CrossRefADSGoogle Scholar
  17. Saghi Z, Xu X, Möbus G (2008a) Three-dimensional metrology and fractal analysis of dendritic nanostructures. Phys Rev B 78:205428CrossRefADSGoogle Scholar
  18. Saghi Z, Xu XJ, Möbus G (2008b) Electron tomography of regularly shaped nanostructures under non-linear image acquisition. J Microsc 232:186–195CrossRefPubMedGoogle Scholar
  19. Saghi Z, Gnanavel T, Peng Y, Inkson BJ, Cullis AG, Gibbs MR, Möbus G (2008c) Tomographic nanofabrication of ultrasharp three-dimensional nanostructures. Appl Phys Lett 93:153102CrossRefADSGoogle Scholar
  20. Sayle DC, Seal S, Wang Z, Mangili BC, Price DW, Karakoti AS, Satyanarayana VT, Kuchibhatla N, Hao Q, Möbus G, Xu X, Sayle TXT (2008) Mapping nanostructure: a systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions. ACS Nano 2:1237–1251CrossRefPubMedGoogle Scholar
  21. Sun YG, Xia YN (2002) Shape controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefPubMedADSGoogle Scholar
  22. Vartanyants IA, Zozulya AV, Mudboth K, Yefanov OM, Richard MI, Wintersberger E, Stangl J, Diaz A, Mocuta C, Metzger TH, Bauer G, Boeck T, Schmidbauer M (2008) Crystal truncation planes revealed by three-dimensional reconstruction of reciprocal space. Phys Rev B 77:115317CrossRefADSGoogle Scholar
  23. Williams GJ, Pfeifer MA, Vartanyants IA, Robinson IK (2003) Three-dimensional imaging of microstructure in Au nanocrystals. Phys Rev Lett 90:175501-1–175501-4Google Scholar
  24. Xu XJ, Saghi Z, Gay R, Möbus G (2007) Reconstruction of 3D morphology of polyhedral nanoparticles. Nanotechnology 18:225501–225508CrossRefADSGoogle Scholar
  25. Yacaman MJ, Ascencio JA, Liu HB, Torresday JG (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B 19:1091–1103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK

Personalised recommendations