Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1307–1318 | Cite as

Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

  • Miguel A. Muñoz-Márquez
  • Estefanía Guerrero
  • Asunción Fernández
  • Patricia Crespo
  • Antonio Hernando
  • Raquel Lucena
  • José C. Conesa
Research Paper

Abstract

Magnetometry results have shown that gold NPs (∼2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

Keywords

Gold clusters Gold nanoparticles EPR spectroscopy SQUID magnetometry Ferromagnetic behaviour 

Notes

Acknowledgements

The authors would like to acknowledge the support of the European Synchrotron Radiation Facility and BM29 beamline staff. This research has been supported by the Spanish Ministry of Science ‘Ministerio de Ciencia e Innovación (MICINN)’ (Strategic Action NAN2004-09125-C07) and the Andalusian Government ‘Junta de Andalucía’ (Excellence Project P06-FQM-02254 and P09-FQM-4554, group TEP127). M.A. Muñoz-Márquez thanks the Spanish Research Council ‘Consejo Superior de Investigaciones Científicas (CSIC)’ I3P programme, E. Guerrero acknowledges the MICINN for financial support and R. Lucena thanks CSIC for a PhD grant.

References

  1. Abraham DW, Frank MM, Guha S (2005) Absence of magnetism in hafnium oxide films. Appl Phys Lett 87(25):252, 502CrossRefGoogle Scholar
  2. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937CrossRefADSGoogle Scholar
  3. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101(19):3706–3712CrossRefGoogle Scholar
  4. Andres RP, Bielefeld JD, Henderson JI, Janes DB, Kolagunta VR, Kubiak CP, Mahoney WJ, Osifchin RG (1996) Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273:1690–1693CrossRefADSGoogle Scholar
  5. Baker TA, Friend CM, Kaxiras E (2008) Chlorine interaction with defects on the Au(111) surface: a first-principles theoretical investigation. J Chem Phys 129(10):104, 702CrossRefGoogle Scholar
  6. Barnard AS, Young NP, Kirkland AI, van Huis MA, Xu H (2009) Nanogold: a quantitative phase map. ACS Nano 3(6):1431–1436CrossRefPubMedGoogle Scholar
  7. Bartlett PA, Bauer B, Singer SJ (1978) Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems. J Am Chem Soc 100(16):5085–5089CrossRefGoogle Scholar
  8. Boyen HG, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmüller S, Hartmann C, Möller M, Schmid G, Garnier MG, Oelhafen P (2002) Oxidation-resistant gold-55 clusters. Science 297(5586):1533–1536CrossRefPubMedADSGoogle Scholar
  9. Braunstein P, Lehner H, Matt D, Burgess K, Ohlmeyer MJ (1990) Inorganic Syntheses, vol 27, chap 5: transition metal cluster complexes. Wiley InterScience, Malden. Section 42, A platinum-gold cluster: chloro-1 κ C l-bis(triethylphosphine-1κP)bis(triphenyl-phosphine)- 2κP, 3κP-triangulo-digold-platinum(1+) trifluoromethanesulfonate, pp 218–221Google Scholar
  10. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP (1981) Synthesis and X-ray structural characterization of the centered icosahedral gold cluster compound [Au13(PMe2Ph)10Cl2](PF6)3: the realization of a theoretical prediction. J Chem Soc Chem Commun (5):201–202Google Scholar
  11. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun, p 801Google Scholar
  12. Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79(10):1873–1876CrossRefADSGoogle Scholar
  13. Crespo P, Litrán R, Rojas TC, Multigner M, de la Fuente JM, Sánchez-López JC, García MA, Hernando A, Penadés S, Fernández A (2004) Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys Rev Lett 93(8):87, 204CrossRefGoogle Scholar
  14. Crespo P, García MA, Fernández-Pinel E, Multigner M, Alcántara D, de la Fuente JM, Penadés S, Hernando A (2006) Fe impurities weaken the ferromagnetic behavior in Au nanoparticles. Phys Rev Lett 97(17):177, 203CrossRefGoogle Scholar
  15. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem Rev 104(1):293–346CrossRefPubMedGoogle Scholar
  16. de la Venta J, Bouzas V, Pucci A, Laguna-Marco MA, Haskel D, te Velthuis SGE, Hoffmann A, Lal J, Bleuel M, Ruggeri G, de Julián Fernández C, García MA (2009) X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles. J Nanosci Nanotech 9:6434–6438CrossRefGoogle Scholar
  17. Dutta P, Dal S, Seehra S, Anand M, Roberts CB (2007) Magnetism in dodecanethiol-capped gold nanoparticles: role of size and capping agent. Appl Phys Lett 90(21):102, 213CrossRefGoogle Scholar
  18. Fittipaldi M, Sorace L, Barra AL, Sangregorio C, Sessoli R, Gatteschi D (2009) Molecular nanomagnets and magnetic nanoparticles: the EMR contribution to a common approach. Phys Chem Chem Phys 11(31):6555–6568CrossRefPubMedGoogle Scholar
  19. Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, Gil de Muro I, Suzuki K, Plazaola F, Rojo T (2008) Chemically induced permanent magnetism in Au, Ag and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8(2):661–667CrossRefPubMedADSGoogle Scholar
  20. Gonzalez C, Simón-Manso Y, Marquez M, Mujica V (2006) Chemisorption-induced spin symmetry breaking in gold clusters and the onset of paramagnetism in capped gold nanoparticles. J Phys Chem B 110(2):687–691CrossRefPubMedGoogle Scholar
  21. Guerrero E, Rojas TC, Multigner M, Crespo P, Muñoz-Márquez MA, García MA, Hernando A, Fernández A (2007) Evolution of the microstructure, chemical composition and magnetic behaviour during the synthesis of alkanethiol-capped gold nanoparticles. Acta Mater 55(5):1723–1730CrossRefGoogle Scholar
  22. Guerrero E, Muñoz-Márquez MA, García MA, Crespo P, Fernández-Pinel E, Hernando A, Fernández A (2008) Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles. Nanotechnology 19(17):175, 701CrossRefGoogle Scholar
  23. Hernando A, Crespo P, García MA (2006a) Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale. Phys Rev Lett 96(5):57, 206CrossRefGoogle Scholar
  24. Hernando A, Crespo P, García MA, Fernández-Pinel E, de la Venta J, Fernández A, Penadés S (2006b) Giant magnetic anisotropy at the nanoscale: overcoming the superparamagnetic limit. Phys Rev B 74(5):52, 403CrossRefGoogle Scholar
  25. Jiang M, Terra J, Rossi AM, Morales MA, Saitovitch EMB, Ellis DE (2002) Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment. Phys Rev B 66(22):107, 224CrossRefGoogle Scholar
  26. Kastanas GN, Koel BE (1993) Interaction of Cl2 with the Au(111) surface in the temperature range of 120 to 1000 K. Appl Surf Sci 64:235–249CrossRefADSGoogle Scholar
  27. Luo W, Pennycook SJ, Pantelides ST (2007) s-Electron ferromagnetism in gold and silver nanoclusters. Nano Lett 7(10):3134–3137CrossRefPubMedADSGoogle Scholar
  28. Menard LD, Gao SP, Xu H, Twesten RD, Harper AS, Song Y, Wang G, Douglas AD, Yang JC, Frenkel AI, Nuzzo RG, Murray RW (2006a) Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. J Phys Chem B 110(26):12874–12883CrossRefPubMedGoogle Scholar
  29. Menard LD, Xu H, Gao SP, Twesten RD, Harper AS, Song Y, Wang G, Douglas AD, Yang JC, Frenkel AI, Murray RW, Nuzzo RG (2006b) Metal core bonding motifs of monodisperse icosahedral Au13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy. J Phys Chem B 110(30):14564–14573CrossRefGoogle Scholar
  30. Michael F, Gonzalez C, Mujica V, Marquez M, Ratner MA (2007) Size dependence of ferromagnetism in gold nanoparticles: mean field results. Phys Rev B 76(22):224, 409CrossRefGoogle Scholar
  31. Mingos DMP (1976) Molecular-orbital calculations on cluster compounds of gold. J Chem Soc Dalton Trans (13):1163–1169Google Scholar
  32. Mingos DMP (1996) Gold—a flexible friend in cluster chemistry. J Chem Soc Dalton Trans (5):561–566Google Scholar
  33. Müllegger S, Hänel K, Strunskus T, Wöll C, Winkler A (2006) Organic molecular beam deposition of oligophenyls on Au(111): a study by X-ray absorption spectroscopy. Chem Phys Chem 7:2552–2558PubMedGoogle Scholar
  34. Narayanaswamy D, Marks LD (1993) Transformation in quasi-melting. Z Phys D 26:S70–S72CrossRefADSGoogle Scholar
  35. Negishi Y, Tsunoyama H, Suzuki M, Kawamura N, Matsushita MM, Maruyama K, Sugawara T, Yokoyama T, Tsukuda T (2006) X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J Am Chem Soc 128(37):12034–12035CrossRefGoogle Scholar
  36. Nunokawa K, Onaka S, Ito M, Horibe M, Yonezawa T, Nishihara H, Ozeki T, Chiba H, Watase S, Nakamoto M (2006) Synthesis, single crystal X-ray analysis, and TEM for a single-size Au11 cluster stabilized by SR ligands: the interface between molecules and particles. J Organomet Chem 691:638–642CrossRefGoogle Scholar
  37. Periyasamy G, Remacle F (2009) Ligand and solvation effects on the electronic properties of Au55 clusters: a density functional theory study. Nano Lett 9(8):3007–3011CrossRefPubMedADSGoogle Scholar
  38. Sampedro B, Crespo P, Hernando A, Litrán R, Sánchez-López JC, López-Cartes C, Fernández A, Ramírez J, Calbet JG, Vallet M (2003) Ferromagnetism in fcc twinned 2.4 nm size Pd nanoparticles. Phys Rev Lett 91(23):203, 237CrossRefGoogle Scholar
  39. Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37:1909–1930CrossRefPubMedADSGoogle Scholar
  40. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, Vandervelden WA (1981) Au55[P(C6H5)3]12Cl6—a gold cluster of an exceptional size. Chem Ber 114:3634–3642CrossRefGoogle Scholar
  41. Shinohara T, Sato T, Taniyama T (2003) Surface ferromagnetism of Pd fine particles. Phys Rev Lett 91(19):197, 201CrossRefGoogle Scholar
  42. Song Y, Huang T, Murray RW (2003) Heterophase ligand exchange and metal transfer between monolayer protected clusters. J Am Chem Soc 125(38):11694–11701CrossRefGoogle Scholar
  43. Steiner UB, Neuenschwander P, Caseri WR, Suter UW, Stucki F (1992) Adsorption of NPh3, PPh3, AsPh3, SbPh3 and BiPh3 on gold and copper. Langmuir 8(1):90–94CrossRefGoogle Scholar
  44. Suber L, Fiorani D, Scavia G, Imperatori P, Plunkett WR (2007) Permanent magnetism in dithiol-capped silver nanoparticles. Chem Mater 19(6):1509–1517CrossRefGoogle Scholar
  45. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRefPubMedADSGoogle Scholar
  46. Teo BK, Shi XB, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc 114(7):2743–2745CrossRefGoogle Scholar
  47. Tronconi AL, Morais PC, Pelegrini F, Tourinho FA (1993) Electron paramagnetic resonance study of ionic water-based manganese ferrite ferrofluids. J Magn Magn Mater 122:90–92CrossRefADSGoogle Scholar
  48. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticles catalysts derived from 55-atom clusters. Nature 454:981–U31CrossRefPubMedADSGoogle Scholar
  49. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650CrossRefPubMedADSGoogle Scholar
  50. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci USA 105(51):9157–9162CrossRefPubMedADSGoogle Scholar
  51. Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (d core ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122(51):12890–12891CrossRefGoogle Scholar
  52. Whetten RL, Price RC (2007) Nano-golden order. Science 318:407–408CrossRefPubMedGoogle Scholar
  53. Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mat 8(5):428CrossRefGoogle Scholar
  54. Wilcoxon JP, Martin JE, Provencio P (2000) Size distributions of gold nanoclusters studied by liquid chromatography. Langmuir 16(25):9912–9920CrossRefGoogle Scholar
  55. Woehrle GH, Hutchison JE (2005) Thiol-functionalized undecagold clusters by ligand exchange: synthesis, mechanism, and properties. Inorg Chem 44(18):6149–6158CrossRefPubMedGoogle Scholar
  56. Yamamoto Y, Miura T, Suzuki M, Kawamura N, Miyagawa H, Nakamura T, Kobayashi K, Teranishi T, Hori H (2004) Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys Rev Lett 93(11):116, 801CrossRefGoogle Scholar
  57. Yang Y, Chen S (2003) Surface manipulation of the electronic energy of subnanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett 3(1):75–79CrossRefADSGoogle Scholar
  58. Yu M, Bovet N, Satterley CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) True nature of an archetypal self-assembly system: mobile Au-thiolate species on Au(111). Phys Rev Lett 97(16):102, 166CrossRefGoogle Scholar
  59. Zhang P, Sham TK (2002) Tuning the electronic behavior of Au nanoparticles with capping molecules. Appl Phys Lett 81(4):736–738CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Miguel A. Muñoz-Márquez
    • 1
  • Estefanía Guerrero
    • 1
  • Asunción Fernández
    • 1
  • Patricia Crespo
    • 2
    • 3
  • Antonio Hernando
    • 2
    • 3
  • Raquel Lucena
    • 4
  • José C. Conesa
    • 4
  1. 1.Instituto de Ciencia de Materiales de Sevilla (CSIC-US)SevillaSpain
  2. 2.Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC)Las Rozas, MadridSpain
  3. 3.Departamento de Física de MaterialesUCMMadridSpain
  4. 4.Instituto de Catálisis y Petroleoquímica (CSIC)MadridSpain

Personalised recommendations