Journal of Nanoparticle Research

, Volume 12, Issue 6, pp 2295–2305 | Cite as

Fabrication and luminescent properties of CaWO4:Ln3+ (Ln = Eu, Sm, Dy) nanocrystals

  • Wenxin Wang
  • Piaoping Yang
  • Shili Gai
  • Na Niu
  • Fei He
  • Jun Lin
Comm. on novel techn. and applications

Abstract

Scheelite CaWO4 doped with rare earth ions (Eu3+, Sm3+, Dy3+) were fabricated via a facile solvothermal process without further heat treatment, which used sodium oleate and oleylamine as capping reagent. The structure, morphology, and optical properties of the samples were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscope (HRTEM), X-ray photoelectron spectra (XPS), photoluminescence (PL) spectra and cathodoluminescence (CL). The XRD results reveal that all the doped samples are well assigned to the scheelite structure of the CaWO4 phase. Upon excitation by ultraviolet radiation, the CaWO4:Eu3+ phosphors show the characteristic 5D07F1–3 emission lines of Eu3+, and the CaWO4:Sm3+ phosphors demonstrate the characteristic 4G5/26H5/2–9/2 emission line of Sm3+, and the CaWO4:Dy3+ phosphors demonstrate the characteristic 4F9/26H13/2–15/2 emission line of Dy3+.

Keywords

Calcium tungstate Solvothermal Luminescence Rare earth Sheelite Synthesis method 

References

  1. Burcham LJ, Wachs IE (1998) Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3. Spectrochim Acta A 54:1355–1368. doi:10.1016/S1386-1425(98)00036-5 CrossRefGoogle Scholar
  2. Chen D, Shen GZ, Tang KB, Zheng HG, Qian YT (2003) Low-temperature synthesis of metal tungstates nanocrystallites in ethylene glycol. Mater Res Bull 38:1783–1789. doi:10.1016/j.materresbull.2003.09.004 CrossRefGoogle Scholar
  3. Feldman C (1960) Range of 1–10 keV electrons in solids. Phys Rev 117:455CrossRefADSGoogle Scholar
  4. Hsu C, Powell RC (1975) Energy-transfer in europium doped yttrium vanadate crystals. J Lumin 10:273–293CrossRefGoogle Scholar
  5. Jia G, Song Y, Yang M, Huang Y, Zhang L, You H (2009) Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties. Opt Mater 31:1032–1037. doi:10.1016/j.optmat.2008.11.012 CrossRefADSGoogle Scholar
  6. Jun Y-w, Jung Y-y, Cheon J (2002) Architectural control of magnetic semiconductor nanocrystals. J Am Chem Soc 124:615–619. doi:10.1021/ja016887w CrossRefPubMedGoogle Scholar
  7. Kay MI, Fraizer BC, Almodovar I (1964) Neutron diffraction refinement of CaWO4. J Chem Phys 40:504–506Google Scholar
  8. Li G, Boerio-Goates J, Woodfield BF, Li L (2004) Evidence of linear lattice expansion and covalency enhancement in rutile TiO nanocrystals. Appl Phys Lett 85:2059–2061CrossRefADSGoogle Scholar
  9. Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen MS, Berger S (2003) Synthesis and characterization of pbse quantum wires, multipods, quantum rods, and cubes. Nano Lett 3:857–862. doi:10.1021/nl0342085 CrossRefADSGoogle Scholar
  10. Lin C, Kong D, Liu X, Wang H, Yu M, Lin J (2007) Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization. Inorg Chem 46:2674–2681. doi:10.1021/ic062318j CrossRefPubMedGoogle Scholar
  11. Mao Y, Huang JY, Ostroumov R, Wang KL, Chang JP (2008) Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes. J Phys Chem C 112:2278–2285. doi:10.1021/jp0773738 CrossRefGoogle Scholar
  12. Mikhailik VB, Bailiff IK, Kraus H, Rodnyi PA, Ninkovic J (2003) Two-photon excitation and luminescence of a CaWO4 scintillator. Radiat Meas 38:585–588CrossRefGoogle Scholar
  13. Nagirnyi V, Feldbach E, Jonsson L, Kirm M, Lushchik A, Lushchik C, Nagornaya LL, Ryzhikov VD, Savikhin F, Svensson G, Tupitsina IA (1997) Excitonic and recombination processes in CaWO4 and CdWO4 scintillators under synchrotron irradiation. Radiat Meas 29:247–250CrossRefGoogle Scholar
  14. Nazarov MV, Jeon DY, Kang JH, Popovici E, Muresan LE, Zamoryanskaya MV, Tsukerblat BS (2004) Luminescence properties of europium-terbium double activated calcium tungstate phosphor. Solid State Commun 131:307–311. doi:10.1016/j.ssc.2004.05.025 CrossRefADSGoogle Scholar
  15. Petricca F, Angloher G, Cozzini C, Frank T, Hauff D, Ninkovic J, Pröbst F, Seidel W, Uchaikin S (2004) Light detector development for CRESST II. Nucl Instrum Method A 520:193–196. doi:10.1016/j.nima.2003.11.291 CrossRefADSGoogle Scholar
  16. Senyshyn A, Kraus H, Mikhailik VB, Yakovyna V (2004) Lattice dynamics and thermal properties of CaWO4. Phys Rev B 70:9. doi:10.1103/PhysRevB.70.214306 CrossRefGoogle Scholar
  17. Shi DL, Lian J, Wang W, Liu GK, He P, Dong ZY, Wang LM, Ewing RC (2006) Luminescent carbon nanotubes by surface functionalization. Adv Mater 18:189. doi:10.1002/adma.200501680 CrossRefGoogle Scholar
  18. Shi S, Gao J, Zhou J (2008) Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor. Opt Mater 30:1616–1620. doi:10.1016/j.optmat.2007.10.007 CrossRefADSGoogle Scholar
  19. Si S, Li C, Wang X, Yu D, Peng Q, Li Y (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5:391–393. doi:10.1021/cg0497905 CrossRefGoogle Scholar
  20. Su Y, Li G, Xue Y, Li L (2007) Tunable physical properties of CaWO4 nanocrystals via particle size control. J Phys Chem C 111:6684–6689. doi:10.1021/jp068480p CrossRefGoogle Scholar
  21. Su Y, Li L, Li G (2008) Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem Mater 20:6060–6067. doi:10.1021/cm8014435 CrossRefGoogle Scholar
  22. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B 105:2260–2263. doi:10.1021/jp003177o CrossRefGoogle Scholar
  23. Treadaway MJ, Powell RC (1975) Energy-transfer in samarium-doped calcium tungstate crystals. Phys Rev B 11:862–874CrossRefADSGoogle Scholar
  24. Van Vliet JPM, Blasse G, Brixner LH (1988) Luminescence properties of alkali europium double tungstates and molybdates AEuM2O8. J Solid State Chem 76:160–166. doi:10.1016/0022-4596(88)90203-4 CrossRefADSGoogle Scholar
  25. Wang H, Lin CK, Liu XM, Lin J, Yu M (2005) Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays. Appl Phys Lett 87. doi: 10.1063/1.2123382
  26. Wang ZL, Quan ZW, Lin J, Fang JY (2005b) Polyol-mediated synthesis and photoluminescent properties of Ce3+ and/or Tb3+-doped LaPO4 nanoparticles. J Nanosci Nanotech 5:1532–1536. doi:10.1166/jnn.2005.319 CrossRefGoogle Scholar
  27. Wuister SF, Swart I, van Driel F, Hickey SG, de Mello Donega C (2003) Highly luminescent water-soluble CdTe quantum dots. Nano Lett 3:503–507. doi:10.1021/nl034054t CrossRefADSGoogle Scholar
  28. Wuister SF, de Mello Donega C, Meijerink A (2004) Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent. J Am Chem Soc 126:10397–10402. doi:10.1021/ja048222a CrossRefPubMedGoogle Scholar
  29. Xu J, Ge J-P, Li Y-D (2006) Solvothermal synthesis of monodisperse PbSe nanocrystals. J Phys Chem B 110:2497–2501. doi:10.1021/jp056521w CrossRefPubMedGoogle Scholar
  30. Yang P, Quan Z, Li C, Lian H, Huang S, Lin J (2008a) Fabrication, characterization of spherical CaWO4:Ln @MCM-41(Ln = Eu3+, Dy3+, Sm3+, Er3+) composites and their applications as drug release systems. Microporous Mesoporous Mater 116:524–531. doi:10.1016/j.micromeso.2008.05.016 CrossRefGoogle Scholar
  31. Yang P, Quan Z, Lu L, Huang S, Lin J (2008b) Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems. Biomaterials 29:692–702. doi:0.1016/j.biomaterials.2007.10.019 CrossRefPubMedGoogle Scholar
  32. Yi GR, Moon JH, Manoharan VN, Pine DJ, Yang SM (2002) Packings of uniform microspheres with ordered macropores fabricated by double templating. J Am Chem Soc 124:13354–13355CrossRefPubMedGoogle Scholar
  33. Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem Mater 14:2224–2231. doi:10.1021/cm011663y CrossRefGoogle Scholar
  34. Zhang Y, Li Y (2004) Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability. J Phys Chem B 108:17805–17811. doi:10.1021/jp047446c CrossRefGoogle Scholar
  35. Zhang Y, Peng Q, Wang X, Li Y (2004) Synthesis and characterization of monodisperse ZnS nanospheres. Chem Lett 33:1320–1321CrossRefGoogle Scholar
  36. Zhang Q, Yao W-T, Chen X, Yu S-H (2007) Nearly monodisperse tungstate MWO4 microspheres (M) Pb, Ca): surfactant-assisted solution synthesis and optical properties. Cryst Growth Des 7:1423–1431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Wenxin Wang
    • 1
  • Piaoping Yang
    • 1
  • Shili Gai
    • 1
  • Na Niu
    • 1
  • Fei He
    • 1
  • Jun Lin
    • 2
  1. 1.College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations