Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5887–5897 | Cite as

Soft chemistry routes for synthesis of rare earth oxide nanoparticles with well defined morphological and structural characteristics

  • L. Mancic
  • B. A. Marinkovic
  • K. Marinkovic
  • M. Dramicanin
  • O. Milosevic
Special Issue: Nanostructured Materials 2010

Abstract

Phosphors of (Y0.75Gd0.25)2O3:Eu3+ (5 at.%) have been prepared through soft chemistry routes. Conversion of the starting nitrates mixture into oxide is performed through two approaches: (a) hydrothermal treatment (HT) at 200 °C/3 h of an ammonium hydrogen carbonate precipitated mixture and (b) by thermally decomposition of pure nitrate precursor solution at 900 °C in dispersed phase (aerosol) within a tubular flow reactor by spray pyrolysis process (SP). The powders are additionally thermally treated at different temperatures: 600, 1000, and 1100 °C for either 3 or 12 h. HT—derived particles present exclusively one-dimensional morphology (nanorods) up to the temperatures of 600 °C, while the leaf-like particles start to grow afterward. SP—derived particles maintain their spherical shape up to the temperatures of 1100 °C. These submicron sized spheres were actually composed of randomly aggregated nanoparticles. All powders exhibits cubic Ia-3 structure (Y0.75Gd0.25)2O3:Eu and have improved optical characteristics due to their nanocrystalline nature. The detailed study of the influence of structural and morphological powder characteristics on their emission properties is performed based on the results of X-ray powder diffractometry, scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, and photoluminescence measurements.

Keywords

(YGd)2O3:Eu3+ Luminescence Nanorods Spherical particles Hydrothermal synthesis Spray pyrolysis Rare metals Sustainability 

References

  1. Andric Z, Dramicanin MD, Mitric M, Jokanovic V, Bessiere A, Viana B (2008) Polymer complex solution synthesis of (YxGd1−x)2O3:Eu3+ nanopowders. Opt Mater 30:1023CrossRefGoogle Scholar
  2. Bai X, Song H, Yu L, Pan G, Lu S, Ren X, Lei Y, Fan L (2005) Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method. J Phys Chem B 109:15236–15242CrossRefGoogle Scholar
  3. Camenzind A, Strobel R, Pratsinis SE (2005) Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis. Chem Phys Lett 415:193–197CrossRefGoogle Scholar
  4. Coelho AA (2004) Topas-Academic. http://www.topas-academic.net/
  5. Joffin N, Caillier B, Garcia A, Guillot P, Galy J, Fernandes A, Mauricot R, Dexpert-Ghys J (2006) Phosphor powders elaborated by spray-pyrolysis: characterizations and possible applications. Opt Mater 28:597–601CrossRefGoogle Scholar
  6. Kang YC, Roh HS, Seo DJ, Park SB (2000) The effect of metal carbonate fluxes on the crystallinity, morphology, and photoluminescence characteristics of Y2O3:Eu phosphor in spray pyrolysis. J Mat Sci Lett 19:1225–1227CrossRefGoogle Scholar
  7. Kang JC, Seo DJ, Park SB, Park HD (2001) Morphological and optical characteristics of Y2O3:Eu phosphor particles prepared by flame spray pyrolysis. Jpn J Appl Phys 40:4083–4086CrossRefGoogle Scholar
  8. Kokuoz BY, Serivalsatit K, Kokuoz B, Geiculescu O, McCormick E, Ballato J (2009) Er-doped Y2O3 nanoparticles: a comparison of different synthesis methods. J Am Ceram Soc 92:2247–2253CrossRefGoogle Scholar
  9. Kremenovic A, Antic B, Nikolic AS, Blanusa J, Jancar B, Meden A, Mentus S (2007) The depandance of cation distribution, microstrain and magnetic susceptibility on particle size in nanocrystalline Gd2O3/Y2O3. Scr Mater 57:1061CrossRefGoogle Scholar
  10. Li X, Liu H, Wang J, Zhang X, Cui H (2004) Preparation and properties of YAG nano-sized powder from different precipitating agent. Opt Mater 25:407–412CrossRefGoogle Scholar
  11. Li X, Li Q, Wang J, Li J (2007) Hydrothermal synthesis of Er doped yttria nanorods with enhanced red emission via upconversion. J Lumin 124:351–356CrossRefGoogle Scholar
  12. Li J-G, Li X, Sun X, Ishigaki T (2008) Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping. J Phys Chem C 112:11707–11716CrossRefGoogle Scholar
  13. Liu Z, Wang Q, Yang Y, Tao C, Yang H (2010) Luminescent properties of codoping Y2O3: Eu, Me (Me = Mg, Ca) nanorods. J Nanopart Res 12:2233–2240CrossRefGoogle Scholar
  14. Mancic L, Marinkovic BA, Marinkovic K, Dramicanin M, Milosevic O (2010) YAG:Ce3 + nanostructured particles obtained via spray pyrolysis of polymeric precursor solution. J Eur Ceram Soc 30:577–582CrossRefGoogle Scholar
  15. Marinkovic K, Mancic L, Gomez LS, Rabanal ME, Dramicanin M, Milosevic O (2010a) Photoluminescent properties of nanostructured Y2O3:Eu3+ powders obtained through aerosol synthesis. Opt Mater 32:1606–1611CrossRefGoogle Scholar
  16. Marinkovic K, Mancic L, Gomez LS, Rabanal ME, Dramicanin M, Milosevic O (2010b) Nanostructured (Y1-xGdx)2O3:Eu3+ powders obtained through aerosol synthesis. In: Paper presented on International Conference on the Characterization and Control of Interfaces, Osaka, September 2009Google Scholar
  17. Meltzer RS, Feofilov SP, Tissue R, Yuan HB (1999) Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Phys Rev B 60:14012CrossRefGoogle Scholar
  18. Mercier B, Dujardin C, Ledoux G, Louis C, Tillement O, Perriat P (2006) Confinement effects in sesquioxydes. J Lumin 119–120:224–227CrossRefGoogle Scholar
  19. Milosevic O, Mancic L, Rabanal ME, Torralba JM, Yang B, Townsend P (2005) Structural and luminescence properties of Gd2O3:Eu3+ and Y3Al5O12:Ce3+ phosphor particles synthesized via aerosol. J Electrochem Soc 152:G707–G713CrossRefGoogle Scholar
  20. Milosevic O, Mancic L, Rabanal ME, Gomez LS, Marinkovic K (2009) Aerosol route in processing of nanostructured functional materials. KONA 27:84–107Google Scholar
  21. Minami T, Wang W-N, Iskandar F, Okuyama K (2008) Photoluminescence properties of submicrometer phosphors with different crystallite/particle sizes. Jpn J Appl Phys 47:7220–7223CrossRefGoogle Scholar
  22. Rabanal ME, Gomez LS, Khalifa A, Torralba JM, Mancic L, Milosevic O (2007) Structural properties of europia-doped-gadolinia synthesized through aerosol. J Eur Ceram Soc 27:4325–4328CrossRefGoogle Scholar
  23. Roh HS, Kang YC, Park SB (2000) Morphology and luminescence of (GdY)2O3:Eu particles prepared by colloidal seed-assisted spray pyrolysis. J Colloid Interface Sci 228:195–199CrossRefGoogle Scholar
  24. Tanner PA, Fu L (2009) Morphology of Y2O3:Eu3+ prepared by hydrothermal synthesis. Chem Phys Lett 470:75–79CrossRefGoogle Scholar
  25. Wan J, Wang Z, Chen X, Mu L, Qian Y (2005) Shape-tailored photoluminescent intensity of red phosphor Y2O3:Eu3+. J Cryst Growth 284:538–543CrossRefGoogle Scholar
  26. Wang X, Sun X-M, Yu D, Zou B-S, Li Y (2003) Rare earth compound nanotubes. Adv Mater 15:1442–1445CrossRefGoogle Scholar
  27. Xia B, Lenggoro IW, Okuyama K (2001) Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv Mater 13:1579–1582CrossRefGoogle Scholar
  28. Yin S, Shinozaki M, Sato T (2007) Synthesis and characterization of wire-like and near-spherical Eu2O3-doped Y2O3 phosphors by solvothermal reaction. J Lumin 126:427–433CrossRefGoogle Scholar
  29. Zhao D, Yang Q, Han Z, Sun F, Tang K, Yu F (2008) Rare earth hydroxycarbonate materials with hierarchical structures: preparation and characterisation, and catalytic activity of derived oxides. Solid State Sci 10:1028–1036CrossRefGoogle Scholar
  30. Zhu Q, Li J-G, li X, Sun X (2009) Morphology dependent crystallization and luminescence behavior of (Y, Eu)2O3 red phosphors. Acta Mater 57:5975–5985CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • L. Mancic
    • 1
  • B. A. Marinkovic
    • 2
  • K. Marinkovic
    • 1
  • M. Dramicanin
    • 3
  • O. Milosevic
    • 1
  1. 1.Institute of Technical Science of Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Deparatamento de Engenharia de MateriaisPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Institute of Nuclear Sciences “Vinca”University of BelgradeBelgradeSerbia

Personalised recommendations